scholarly journals Formation and properties of mixed disulfides between thioredoxin reductase from Escherichia coli and thioredoxin: Evidence that cysteine-138 functions to initiate dithiol-disulfide interchange and to accept the reducing equivalent from reduced flavin

1998 ◽  
Vol 7 (6) ◽  
pp. 1441-1450 ◽  
Author(s):  
Donna M. Veine ◽  
Scott B. Mulrooney ◽  
Pan-Fen Wang ◽  
Charles H. Williams
1989 ◽  
Vol 264 (22) ◽  
pp. 12752-12753
Author(s):  
J Kuriyan ◽  
L Wong ◽  
M Russel ◽  
P Model

2006 ◽  
Vol 73 (2) ◽  
pp. 432-441 ◽  
Author(s):  
Olle Rengby ◽  
Elias S. J. Arnér

ABSTRACT Release factor 2 (RF2), encoded by the prfB gene in Escherichia coli, catalyzes translational termination at UGA and UAA codons. Termination at UGA competes with selenocysteine (Sec) incorporation at Sec-dedicated UGA codons, and RF2 thereby counteracts expression of selenoproteins. prfB is an essential gene in E. coli and can therefore not be removed in order to increase yield of recombinant selenoproteins. We therefore constructed an E. coli strain with the endogenous chromosomal promoter of prfB replaced with the titratable PBAD promoter. Knockdown of prfB expression gave a bacteriostatic effect, while two- to sevenfold overexpression of RF2 resulted in a slightly lowered growth rate in late exponential phase. In a turbidostatic fermentor system the simultaneous impact of prfB knockdown on growth and recombinant selenoprotein expression was subsequently studied, using production of mammalian thioredoxin reductase as model system. This showed that lowering the levels of RF2 correlated directly with increasing Sec incorporation specificity, while also affecting total selenoprotein yield concomitant with a lower growth rate. This study thus demonstrates that expression of prfB can be titrated through targeted exchange of the native promoter with a PBAD-promoter and that knockdown of RF2 can result in almost full efficiency of Sec incorporation at the cost of lower total selenoprotein yield.


1994 ◽  
Vol 236 (3) ◽  
pp. 800-816 ◽  
Author(s):  
Gabriel Waksman ◽  
Talluru S.R. Krishna ◽  
Charles H. Williams ◽  
John Kuriyan

Sign in / Sign up

Export Citation Format

Share Document