mixed disulfides
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 9)

H-INDEX

32
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Chengcheng Fan ◽  
Douglas C Rees

The ATP Binding Cassette (ABC) transporter of mitochondria (Atm) from Arabidopsis thaliana (AtAtm3) has been implicated in the maturation of cytosolic iron-sulfur proteins and heavy metal detoxification, plausibly by exporting glutathione derivatives. Using single-particle cryo-electron microscopy, we have determined structures of AtAtm3 in multiple conformational states. These structures not only provide a structural framework for defining the alternating access transport cycle, but also highlight an unappreciated feature of the glutathione binding site, namely the paucity of cysteine residues that could potentially form inhibitory mixed disulfides with glutathione. Despite extensive efforts, we were unable to prepare the ternary complex of AtAtm3 with bound GSSG and MgATP. A survey of structurally characterized type IV ABC transporters that includes AtAtm3 establishes that while nucleotides are found associated with all conformational states, they are effectively required to stabilize occluded and outward-facing conformations. In contrast, transport substrates have only been observed associated with inward-facing conformations. The absence of structures containing both nucleotide and transport substrate suggests that this ternary complex exists only transiently during the transport cycle.


Amino Acids ◽  
2021 ◽  
Author(s):  
Hagar Elkafrawy ◽  
Radwa Mehanna ◽  
Fayrouz Ali ◽  
Ayman Barghash ◽  
Iman Dessouky ◽  
...  

AbstractPlasma cysteine is associated with human obesity, but it is unknown whether this is mediated by reduced, disulfide (cystine and mixed-disulfides) or protein-bound (bCys) fractions. We investigated which cysteine fractions are associated with adiposity in vivo and if a relevant fraction influences human adipogenesis in vitro. In the current study, plasma cysteine fractions were correlated with body fat mass in 35 adults. Strong positive correlations with fat mass were observed for cystine and mixed disulfides (r ≥ 0.61, P < 0.001), but not the quantitatively major form, bCys. Primary human preadipocytes were differentiated in media containing cystine concentrations varying from 10–50 μM, a range similar to that in plasma. Increasing extracellular cystine (10–50 μM) enhanced mRNA expression of PPARG2 (to sixfold), PPARG1, PLIN1, SCD1 and CDO1 (P = 0.042– < 0.001). Adipocyte lipid accumulation and lipid-droplet size showed dose-dependent increases from lowest to highest cystine concentrations (P < 0.001), and the malonedialdehyde/total antioxidant capacity increased, suggesting increased oxidative stress. In conclusion, increased cystine concentrations, within the physiological range, are positively associated with both fat mass in healthy adults and human adipogenic differentiation in vitro. The potential role of cystine as a modifiable factor regulating human adipocyte turnover and metabolism deserves further study.


3 Biotech ◽  
2021 ◽  
Vol 11 (8) ◽  
Author(s):  
Yang Liu ◽  
Xiaona Li ◽  
Jiaxin Luo ◽  
Tao Su ◽  
Meiru Si ◽  
...  

Abstractncgl2478 gene from Corynebacterium glutamicum encodes a thiol–disulfide oxidoreductase enzyme annotated as dithiol–disulfide isomerase DsbA. It preserves a Cys–Pro–Phe–Cys active-site motif, which is presumed to be an exclusive characteristic of the novel DsbA–mycoredoxin 1 (Mrx1) cluster. However, the real mode of action, the nature of the electron donor pathway and biological functions of NCgl2478 in C. glutamicum have remained enigmatic so far. Herein, we report that NCgl2478 plays an important role in stress resistance. Deletion of the ncgl2478 gene increases the size of growth inhibition zones. The ncgl2478 expression is induced in the stress-responsive extra-cytoplasmic function-sigma (ECF-σ) factor SigH-dependent manner by stress. It receives electrons preferentially from the mycothiol (MSH)/mycothione reductase (Mtr)/NADPH pathway. Further, NCgl2478 reduces S-mycothiolated mixed disulfides and intramolecular disulfides via a monothiol–disulfide and a dithiol–disulfide exchange mechanism, respectively. NCgl2478 lacks oxidase activity; kinetic properties of its demycothiolation are different from those of Mrx1. Site-directed mutagenesis confirms Cys24 is the resolving Cys residue, while Cys21 is the nucleophilic cysteine that is oxidized to a sulfenic acid and then forms an intramolecular disulfide bond with Cys24 or a mixed disulfide with MSH under oxidative stress. In conclusion, our study presents the first evidence that NCgl2478 protects against various stresses by acting as an MSH-dependent thiol–disulfide reductase, belonging to a novel DsbA–Mrx1 cluster.


Amino Acids ◽  
2021 ◽  
Author(s):  
Daniela Giustarini ◽  
Aldo Milzani ◽  
Isabella Dalle-Donne ◽  
Ranieri Rossi

AbstractS-glutathionylated proteins (GSSP), i.e., protein-mixed disulfides with glutathione (GSH), are considered a suitable biomarker of oxidative stress. In fact, they occur within cells at low level and their concentration increases markedly under pro-oxidant conditions. Plasma is something different, since it is physiologically rich in S-thiolated proteins (RSSP), i.e., protein-mixed disulfides with various types of low molecular mass thiols (LMM-SH). However, albumin, which is largely the most abundant plasma protein, possesses a cysteine residue at position 34 that is mostly reduced (about 60%) under physiological conditions, but easily involved in the formation of additional RSSP in the presence of oxidants. The quantification of GSSP requires special attention to sample handling, since their level can be overestimated as a result of artefactual oxidation of GSH. We have developed the present protocol to avoid this methodological problem. Samples should be treated as soon as possible after their collection with the alkylating agent N-ethylmaleimide that masks –SH groups and prevents their oxidation. The GSH released from mixed disulfides by reduction with dithiothreitol is then labeled with the fluorescent probe monobromobimane and quantified by HPLC. The method can be applied to many different biological samples, comprising blood components, red blood cell plasma membrane, cultured cells, and solid organs from animal models.


2021 ◽  
Vol 14 ◽  
Author(s):  
Bon-Kyung Koo ◽  
William Munroe ◽  
Edith B. Gralla ◽  
Joan Selverstone Valentine ◽  
Julian P. Whitelegge

Wild-type human SOD1 forms a highly conserved intra-molecular disulfide bond between C57-C146, and in its native state is greatly stabilized by binding one copper and one zinc atom per monomer rendering the protein dimeric. Loss of copper extinguishes dismutase activity and destabilizes the protein, increasing accessibility of the disulfide with monomerization accompanying disulfide reduction. A further pair of free thiols exist at C6 and C111 distant from metal binding sites, raising the question of their function. Here we investigate their role in misfolding of SOD1 along a pathway that leads to formation of amyloid fibrils. We present the seeding reaction of a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) to exclude variables caused by these free cysteines. Completely reduced fibril seeds decreasing the kinetic barrier to cleave the highly conserved intramolecular disulfide bond, and accelerating SOD1 reduction and initiation of fibrillation. Presence or absence of the pair of free thiols affects kinetics of fibrillation. Previously, we showed full maturation with both Cu and Zn prevents this behavior while lack of Cu renders sensitivity to fibrillation, with presence of the native disulfide bond modulating this propensity much more strongly than presence of Zn or dimerization. Here we further investigate the role of reduction of the native C57-C146 disulfide bond in fibrillation of wild-type hSOD1, firstly through removal of free thiols by paired mutations C6A, C111S (AS-SOD1), and secondly in seeded fibrillation reactions modulated by reductant tris (2-carboxyethyl) phosphine (TCEP). Fibrillation of AS-SOD1 was dependent upon disulfide reduction and showed classic lag and exponential growth phases compared with wild-type hSOD1 whose fibrillation trajectories were typically somewhat perturbed. Electron microscopy showed that AS-SOD1 formed classic fibrils while wild-type fibrillation reactions showed the presence of smaller “sausage-like” oligomers in addition to fibrils, highlighting the potential for mixed disulfides involving C6/C111 to disrupt efficient fibrillation. Seeding by addition of sonicated fibrils lowered the TCEP concentration needed for fibrillation in both wild-type and AS-SOD1 providing evidence for template-driven structural disturbance that elevated susceptibility to reduction and thus propensity to fibrillate.


Author(s):  
Qian Zou ◽  
Yanlin Zhou ◽  
Guojun Cheng ◽  
Yang Peng ◽  
Sha Luo ◽  
...  

Glutaredoxins (Grx) are redoxin family proteins that reduce disulfides and mixed disulfides between glutathione and proteins. Rhizobium leguminosarum bv. Viciae 3841 contains three genes coding for glutaredoxins: RL4289 (grxA) codes for a dithiolic glutaredoxin, RL2615 (grxB) codes for a monothiol glutaredoxin, while RL4261 (grxC) codes for a glutaredoxin-like NrdH protein. We generated mutants interrupted in one, two, or three glutaredoxin genes. These mutants had no obvious differences in growth phenotypes from the wild type RL3841. However, while a mutant of grxC did not affect the antioxidant or symbiotic capacities of R. leguminosarum, grxA-derived or grxB mutants decreased antioxidant and nitrogen fixation capacities. Furthermore, grxA mutants were severely impaired in rhizosphere colonization, and formed smaller nodules with defects of bacteroid differentiation, whereas nodules induced by grxB mutants contained abnormally thick cortices and prematurely senescent bacteroids. The grx triple mutant had the greatest defect in antioxidant and symbiotic capacities of R. leguminosarum and quantitative proteomics revealed it had 56 up-regulated and 81 down-regulated proteins relative to wildtype. Of these proteins, twenty-eight are involved in transporter activity, twenty are related to stress response and virulence, and sixteen are involved in amino acid metabolism. Overall, R. leguminosarum glutaredoxins behave as antioxidant proteins mediating root nodule symbiosis. IMPORTANCE Glutaredoxin catalyzes glutathionylation/deglutathionylation reactions, protects SH-groups from oxidation and restores functionally active thiols. Three glutaredoxins exist in R. leguminosarum and their properties were investigated in free-living bacteria and during nitrogen-fixing symbiosis. All the glutaredoxins were necessary for oxidative stress defense. Dithiol GrxA affects nodulation and nitrogen fixation of bacteroids by altering deglutathionylation reactions, monothiol GrxB is involved in symbiotic nitrogen fixation by regulating Fe-S cluster biogenesis, and GrxC may participate in symbiosis by an unknown mechanism. Proteome analysis provides clues to explain the differences between the grx triple mutant and wild-type nodules.


2020 ◽  
Vol 21 (21) ◽  
pp. 8113 ◽  
Author(s):  
Aysenur Musaogullari ◽  
Yuh-Cherng Chai

S-glutathionylation, the post-translational modification forming mixed disulfides between protein reactive thiols and glutathione, regulates redox-based signaling events in the cell and serves as a protective mechanism against oxidative damage. S-glutathionylation alters protein function, interactions, and localization across physiological processes, and its aberrant function is implicated in various human diseases. In this review, we discuss the current understanding of the molecular mechanisms of S-glutathionylation and describe the changing levels of expression of S-glutathionylation in the context of aging, cancer, cardiovascular, and liver diseases.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1952 ◽  
Author(s):  
Paola Checconi ◽  
Dolores Limongi ◽  
Sara Baldelli ◽  
Maria Rosa Ciriolo ◽  
Lucia Nencioni ◽  
...  

Glutathionylation, that is, the formation of mixed disulfides between protein cysteines and glutathione (GSH) cysteines, is a reversible post-translational modification catalyzed by different cellular oxidoreductases, by which the redox state of the cell modulates protein function. So far, most studies on the identification of glutathionylated proteins have focused on cellular proteins, including proteins involved in host response to infection, but there is a growing number of reports showing that microbial proteins also undergo glutathionylation, with modification of their characteristics and functions. In the present review, we highlight the signaling role of GSH through glutathionylation, particularly focusing on microbial (viral and bacterial) glutathionylated proteins (GSSPs) and host GSSPs involved in the immune/inflammatory response to infection; moreover, we discuss the biological role of the process in microbial infections and related host responses.


2019 ◽  
Author(s):  
Nico Linzner ◽  
Vu Van Loi ◽  
Verena Nadin Fritsch ◽  
Quach Ngoc Tung ◽  
Saskia Stenzel ◽  
...  

ABSTRACTStaphylococcus aureusis a major human pathogen and has to cope with reactive oxygen and chlorine species (ROS, RCS) during infections. The low molecular weight thiol bacillithiol (BSH) is an important defense mechanism ofS. aureusfor detoxification of ROS and HOCl stress to maintain the reduced state of the cytoplasm. Under HOCl stress, BSH forms mixed disulfides with proteins, termed asS-bacillithiolations, which are reduced by bacilliredoxins (BrxA and BrxB). The NADPH-dependent flavin disulfide reductase YpdA is phylogenetically associated with the BSH synthesis and BrxA/B enzymes and was proposed to function as BSSB reductase. Here, we investigated the role of the bacilliredoxin BrxAB/BSH/YpdA pathway inS. aureusCOL under oxidative stress and macrophage infection conditionsin vivoand in biochemical assaysin vitro. Using HPLC thiol metabolomics, a strongly enhanced BSSB level and a decreased BSH/BSSB ratio were measured in theS. aureusCOLypdAdeletion mutant under control and NaOCl stress. Monitoring the BSH redox potential (EBSH) using the Brx-roGFP2 biosensor revealed that YpdA is required for regeneration of the reducedEBSHupon recovery from oxidative stress. In addition, theypdAmutant was impaired in H2O2detoxification as measured with the novel H2O2-specific Tpx-roGFP2 biosensor. Phenotype analyses further showed that BrxA and YpdA are required for survival under NaOCl and H2O2stressin vitroand inside murine J-774A.1 macrophages in infection assaysin vivo. Finally, NADPH-coupled electron transfer assays provide evidence for the function of YpdA in BSSB reduction, which depends on the conserved Cys14 residue. YpdA acts together with BrxA and BSH in de-bacillithiolation ofS-bacilithiolated GapDH. In conclusion, our results point to a major role of the BrxA/BSH/YpdA pathway in BSH redox homeostasis inS. aureusduring recovery from oxidative stress and under infections.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Anthony Mitchell ◽  
Christina Tam ◽  
Derek Elli ◽  
Thomas Charlton ◽  
Patrick Osei-Owusu ◽  
...  

ABSTRACTGlutathionylation, the formation of reversible mixed disulfides between glutathione and protein cysteine residues, is a posttranslational modification previously observed for intracellular proteins of bacteria. Here we show thatYersinia pestisLcrV, a secreted protein capping the type III secretion machine, is glutathionylated at Cys273and that this modification promotes association with host ribosomal protein S3 (RPS3), moderatesY. pestistype III effector transport and killing of macrophages, and enhances bubonic plague pathogenesis in mice and rats. Secreted LcrV was purified and analyzed by mass spectrometry to reveal glutathionylation, a modification that is abolished by the codon substitution Cys273Ala inlcrV. Moreover, thelcrVC273Amutation enhanced the survival of animals in models of bubonic plague. Investigating the molecular mechanism responsible for these virulence attributes, we identified macrophage RPS3 as a ligand of LcrV, an association that is perturbed by the Cys273Ala substitution. Furthermore, macrophages infected by thelcrVC273Avariant displayed accelerated apoptotic death and diminished proinflammatory cytokine release. Deletion ofgshB, which encodes glutathione synthetase ofY. pestis, resulted in undetectable levels of intracellular glutathione, and we used aY. pestisΔgshBmutant to characterize the biochemical pathway of LcrV glutathionylation, establishing that LcrV is modified after its transport to the type III needle via disulfide bond formation with extracellular oxidized glutathione.IMPORTANCEYersinia pestis, the causative agent of plague, has killed large segments of the human population; however, the molecular bases for the extraordinary virulence attributes of this pathogen are not well understood. We show here that LcrV, the cap protein of bacterial type III secretion needles, is modified by host glutathione and that this modification contributes to the high virulence ofY. pestisin mouse and rat models for bubonic plague. These data suggest thatY. pestisexploits glutathione in host tissues to activate a virulence strategy, thereby accelerating plague pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document