scholarly journals Titration and Conditional Knockdown of the prfB Gene in Escherichia coli: Effects on Growth and Overproduction of the Recombinant Mammalian Selenoprotein Thioredoxin Reductase

2006 ◽  
Vol 73 (2) ◽  
pp. 432-441 ◽  
Author(s):  
Olle Rengby ◽  
Elias S. J. Arnér

ABSTRACT Release factor 2 (RF2), encoded by the prfB gene in Escherichia coli, catalyzes translational termination at UGA and UAA codons. Termination at UGA competes with selenocysteine (Sec) incorporation at Sec-dedicated UGA codons, and RF2 thereby counteracts expression of selenoproteins. prfB is an essential gene in E. coli and can therefore not be removed in order to increase yield of recombinant selenoproteins. We therefore constructed an E. coli strain with the endogenous chromosomal promoter of prfB replaced with the titratable PBAD promoter. Knockdown of prfB expression gave a bacteriostatic effect, while two- to sevenfold overexpression of RF2 resulted in a slightly lowered growth rate in late exponential phase. In a turbidostatic fermentor system the simultaneous impact of prfB knockdown on growth and recombinant selenoprotein expression was subsequently studied, using production of mammalian thioredoxin reductase as model system. This showed that lowering the levels of RF2 correlated directly with increasing Sec incorporation specificity, while also affecting total selenoprotein yield concomitant with a lower growth rate. This study thus demonstrates that expression of prfB can be titrated through targeted exchange of the native promoter with a PBAD-promoter and that knockdown of RF2 can result in almost full efficiency of Sec incorporation at the cost of lower total selenoprotein yield.

Genetics ◽  
1979 ◽  
Vol 91 (4) ◽  
pp. 627-637
Author(s):  
Julian Adams ◽  
Thomas Kinney ◽  
Susan Thompson ◽  
Lori Rubin ◽  
Robert B Helling

ABSTRACT Colicin-producing plasmid-containing cells of E. coli exhibit frequency dependent selection when grown in glucose-limited continuous culture with the corresponding plasmid-free strain. The bases of this frequency-dependent effect are shown to be (1) the lower growth rate of the plasmid-containing strain under these conditions, and (2) the production of colicin, which attenuates the growth rate of the plasmid-free strain. These results are discussed in relationship to the maintenance of genetic variation in prokaryotes.


2021 ◽  
Vol 29 (1) ◽  
pp. 1
Author(s):  
M. Martignon ◽  
C. Burel ◽  
D. Licois ◽  
E. Reperant ◽  
G. Postollec ◽  
...  

The impact of a challenge with moderately pathogenic <em>Escherichia coli</em> O128:C6 on the digestive physiology and gut bacterial community of growing rabbits under two feeding programmes was analysed. Upon weaning (28 d old), 180 rabbits were allocated to four groups (9 cages of 5 rabbits per group) for two weeks: group C100 was non-inoculated and fed <em>ad libitum</em>; C70 was non-inoculated and feed intake was limited to 70% of C100; I100 and I70 were inoculated and fed <em>ad libitum</em> or restricted to 70%, respectively. At the age of 31 d (D0), rabbits were orally inoculated with <em>E. coli</em> (2.2×108 colony forming units/rabbit). The effects of inoculation spiked on D4, with a 28% lower growth rate for I100 than for C100. Limited feed intake reinforced the inoculation’s effects on growth: I70 had a 66% lower growth rate than C70. The morbidity rate peaked at 42% between D4 and D7 for inoculated groups, without significant effect of the feed intake level. <em>E. coli</em> concentration peaked on D5/D6 in the caecum of the I100 and I70 groups. Inoculation reduced by 30% (<em>P</em>&lt;0.05) the villus height/crypt depth and villus/crypt area ratios in the ileum, with no significant effect of the intake level. Inoculation was associated with a tenfold increase in serum haptoglobin (<em>P</em>&lt;0.001) for both <em>ad libitum</em> and restricted rabbits. On D5, the inoculation modified the structure of the ileal bacterial community (<em>P</em>&lt;0.05), but not that of the caecum. The feed intake level did not affect either the structure or diversity of the bacterial community, both in the ileum and caecum.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Brendan Cornwell ◽  
Katrina Armstrong ◽  
Nia S Walker ◽  
Marilla Lippert ◽  
Victor Nestor ◽  
...  

Climate change is dramatically changing ecosystem composition and productivity, leading scientists to consider the best approaches to map natural resistance and foster ecosystem resilience in the face of these changes. Here we present results from a large-scale experimental assessment of coral bleaching resistance, a critical trait for coral population persistence as oceans warm, in 221 colonies of the coral Acropora hyacinthus across 37 reefs in Palau. We find that bleaching resistant individuals inhabit most reefs but are found more often in warmer microhabitats. Our survey also found wide variation in symbiont concentration among colonies, and that colonies with lower symbiont load tended to be more bleaching resistant. By contrast, our data show that low symbiont load comes at the cost of lower growth rate, a tradeoff that may operate widely among corals across environments. Corals with high bleaching resistance have been suggested as a source for habitat restoration or selective breeding in order to increase coral reef resilience to climate change. Our maps show where these resilience corals can be found, but the existence of tradeoffs with heat resistance may suggest caution in unilateral use of this one trait in restoration.


2021 ◽  
Vol 12 ◽  
Author(s):  
Almaz Nigatu Tesfahun ◽  
Marina Alexeeva ◽  
Miglė Tomkuvienė ◽  
Aysha Arshad ◽  
Prashanna Guragain ◽  
...  

DNA polymerase III mis-insertion may, where not corrected by its 3′→ 5′ exonuclease or the mismatch repair (MMR) function, result in all possible non-cognate base pairs in DNA generating base substitutions. The most thermodynamically unstable base pair, the cytosine (C)⋅C mismatch, destabilizes adjacent base pairs, is resistant to correction by MMR in Escherichia coli, and its repair mechanism remains elusive. We present here in vitro evidence that C⋅C mismatch can be processed by base excision repair initiated by the E. coli formamidopyrimidine-DNA glycosylase (Fpg) protein. The kcat for C⋅C is, however, 2.5 to 10 times lower than for its primary substrate 8-oxoguanine (oxo8G)⋅C, but approaches those for 5,6-dihydrothymine (dHT)⋅C and thymine glycol (Tg)⋅C. The KM values are all in the same range, which indicates efficient recognition of C⋅C mismatches in DNA. Fpg activity was also exhibited for the thymine (T)⋅T mismatch and for N4- and/or 5-methylated C opposite C or T, Fpg activity being enabled on a broad spectrum of DNA lesions and mismatches by the flexibility of the active site loop. We hypothesize that Fpg plays a role in resolving C⋅C in particular, but also other pyrimidine⋅pyrimidine mismatches, which increases survival at the cost of some mutagenesis.


2012 ◽  
Vol 79 (2) ◽  
pp. 478-487 ◽  
Author(s):  
Suriana Sabri ◽  
Lars K. Nielsen ◽  
Claudia E. Vickers

ABSTRACTSucrose is an industrially important carbon source for microbial fermentation. Sucrose utilization inEscherichia coli, however, is poorly understood, and most industrial strains cannot utilize sucrose. The roles of the chromosomally encoded sucrose catabolism (csc) genes inE. coliW were examined by knockout and overexpression experiments. At low sucrose concentrations, thecscgenes are repressed and cells cannot grow. Removal of either the repressor protein (cscR) or the fructokinase (cscK) gene facilitated derepression. Furthermore, combinatorial knockout ofcscRandcscKconferred an improved growth rate on low sucrose. The invertase (cscA) and sucrose transporter (cscB) genes are essential for sucrose catabolism inE. coliW, demonstrating that no other genes can provide sucrose transport or inversion activities. However,cscKis not essential for sucrose utilization. Fructose is excreted into the medium by thecscK-knockout strain in the presence of high sucrose, whereas at low sucrose (when carbon availability is limiting), fructose is utilized by the cell. Overexpression ofcscA,cscAK, orcscABcould complement the WΔcscRKABknockout mutant or confer growth on a K-12 strain which could not naturally utilize sucrose. However, phenotypic stability and relatively good growth rates were observed in the K-12 strain only when overexpressingcscAB, and full growth rate complementation in WΔcscRKABalso requiredcscAB. Our understanding of sucrose utilization can be used to improveE. coliW and engineer sucrose utilization in strains which do not naturally utilize sucrose, allowing substitution of sucrose for other, less desirable carbon sources in industrial fermentations.


2007 ◽  
Vol 70 (3) ◽  
pp. 543-550 ◽  
Author(s):  
BYENG R. MIN ◽  
WILLIAM E. PINCHAK ◽  
ROBIN C. ANDERSON ◽  
TODD R. CALLAWAY

The effect of commercially available chestnut and mimosa tannins in vitro (experiment 1) or in vivo (experiment 2) on the growth or recovery of Escherichia coli O157:H7 or generic fecal E. coli was evaluated. In experiment 1, the mean growth rate of E. coli O157:H7, determined via the measurement of optical density at 600 nm during anaerobic culture in tryptic soy broth at 37°C, was reduced (P &lt; 0.05) with as little as 400 μg of either tannin extract per ml of culture fluid. The addition of 200, 400, 600, 800, and 1,200 μg of tannins per ml significantly (P &lt; 0.01) reduced the specific bacterial growth rate when compared with the nontannin control. The specific growth rate decreased with increasing dose levels up to 800 μg of tannins per ml. Bacterial growth inhibition effects in chestnut tannins were less pronounced than in mimosa tannins. Chestnut tannin extract addition ranged from 0 to 1,200 μg/ml, and a linear effect (P &lt; 0.05) was observed in cultures incubated for 6 h against the recovery of viable cells, determined via the plating of each strain onto MacConkey agar, of E. coli O157:H7 strains 933 and 86-24, but not against strain 6058. Similar tests with mimosa tannin extract showed a linear effect (P &lt; 0.05) against the recovery of E. coli O157:H7 strain 933 only. The bactericidal effect observed in cultures incubated for 24 h with the tannin preparations was similar, although it was less than that observed from cultures incubated for 6 h. When chestnut tannins (15 g of tannins per day) were infused intraruminally to steers fed a Bermuda grass hay diet in experiment 2, fecal E. coli shedding was lower on days 3 (P &lt; 0.03), 12 (P = 0.08), and 15 (P &lt; 0.001) when compared with animals that were fed a similar diet without tannin supplementation. It was concluded that dietary levels and sources of tannins potentially reduce the shedding of E. coli from the gastrointestinal tract.


2002 ◽  
Vol 74 (1) ◽  
pp. 135-144 ◽  
Author(s):  
A. Belenguer ◽  
J. Balcells ◽  
M. Fondevila ◽  
C. Torre

AbstractThe present study compares estimates of caecotrophes production from urinary purine derivatives (PD) excretion with that from preventing caecotrophy by using a neck collar. A total of 64 New Zealand growing male rabbits were used to study the effect of diet composition on caecotrophes production. Diets were formulated using two sources of structural carbohydrates (fibre): alfalfa hay (AH) and sugar-beet pulp (SBP), mixed at two constant proportions, (0·75: 0·25) AH diets and (0·25: 0·75) SBP diets. Both diets included either barley or maize grain at two fibre: grain ratios (F/G, 80: 20 and 45: 55). Diets were given ad libitum. Growth rate, dry matter intake and digestibility were not modified by the grain source, although high F/G diets resulted in a lower growth rate (19·8 v. 26·4 g/day; P < 0·001). Between fibre sources, dry-matter intake and growth were higher in AH than in SBP diets (122·5 and 25·6 v. 101·6 and 20·4 g/day, respectively, P < 0·001 and P < 0·01). Rabbits given high F/G ratio and AH diets excreted more caecotrophes than those given low F/G ratio and SBP diets (19·5 and 20·9 v. 16·3 and 14·85 g/day, respectively). Microbial-N recycling through the caecotrophy process was higher when considering data from PD excretion (1·33 g/d) than when estimated by preventing caecotrophy (0·72 g/day).


2016 ◽  
Vol 30 (06) ◽  
pp. 1650059
Author(s):  
Jingjing Gao ◽  
Mingwen Chen ◽  
Zidong Wang

The convection of ambient flow field has a significant influence on the pattern formation of growing particles. In this paper, we investigate the shape evolution of particles growing in supersaturated solution affected by straining flows. By using the multiple variable asymptotic expansion method, we obtain the asymptotic solution. The solution indicates that the interface microstructure is greatly affected by the straining flows. The flow results in a higher growth rate in the surface where it is incoming and a lower growth rate where it is outgoing. Besides, the flow also has effects on the concentration distribution.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Valerie S. Forsyth ◽  
Chelsie E. Armbruster ◽  
Sara N. Smith ◽  
Ali Pirani ◽  
A. Cody Springman ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) strains cause most uncomplicated urinary tract infections (UTIs). These strains are a subgroup of extraintestinal pathogenicE. coli(ExPEC) strains that infect extraintestinal sites, including urinary tract, meninges, bloodstream, lungs, and surgical sites. Here, we hypothesize that UPEC isolates adapt to and grow more rapidly within the urinary tract than otherE. coliisolates and survive in that niche. To date, there has not been a reliable method available to measure their growth ratein vivo. Here we used two methods: segregation of nonreplicating plasmid pGTR902, and peak-to-trough ratio (PTR), a sequencing-based method that enumerates bacterial chromosomal replication forks present during cell division. In the murine model of UTI, UPEC strain growth was robustin vivo, matching or exceedingin vitrogrowth rates and only slowing after reaching high CFU counts at 24 and 30 h postinoculation (hpi). In contrast, asymptomatic bacteriuria (ABU) strains tended to maintain high growth ratesin vivoat 6, 24, and 30 hpi, and population densities did not increase, suggesting that host responses or elimination limited population growth. Fecal strains displayed moderate growth rates at 6 hpi but did not survive to later times. By PTR,E. coliin urine of human patients with UTIs displayed extraordinarily rapid growth during active infection, with a mean doubling time of 22.4 min. Thus, in addition to traditional virulence determinants, including adhesins, toxins, iron acquisition, and motility, very high growth ratesin vivoand resistance to the innate immune response appear to be critical phenotypes of UPEC strains.IMPORTANCEUropathogenicEscherichia coli(UPEC) strains cause most urinary tract infections in otherwise healthy women. While we understand numerous virulence factors are utilized byE. colito colonize and persist within the urinary tract, these properties are inconsequential unless bacteria can divide rapidly and survive the host immune response. To determine the contribution of growth rate to successful colonization and persistence, we employed two methods: one involving the segregation of a nonreplicating plasmid in bacteria as they divide and the peak-to-trough ratio, a sequencing-based method that enumerates chromosomal replication forks present during cell division. We found that UPEC strains divide extraordinarily rapidly during human UTIs. These techniques will be broadly applicable to measurein vivogrowth rates of other bacterial pathogens during host colonization.


Weed Science ◽  
1983 ◽  
Vol 31 (4) ◽  
pp. 438-444 ◽  
Author(s):  
William H. Ahrens ◽  
E. W. Stoller

Triazine-susceptible (S) and -resistant (R) biotypes of smooth pigweed (Amaranthus hybridusL.) were grown in the field under competitive conditions at varying initial proportions of S and R plants. R plants were less competitive than S plants as measured by accumulation of total above-ground dry weight and seed dry weight. S and R plants were also grown in the field under non-competitive conditions at 100, 40, and 10% light. Growth rate at 10% light did not differ between S and R plants. At the two higher light intensities, dry-matter accumulation 11 weeks after seeding was about 40% less in the R plants. At 100% light, relative growth rate and net assimilation rate were lower in the R plants by about 3.5 and 19%, respectively. The light- and CO2-saturated rates of CO2fixation in intact leaves of glasshouse-grown R plants were 20% less than those in S plants. An apparent 10 and 20% greater number of chlorophyll molecules per photosystem II reaction center in R plants (as compared with S plants) grown in the field at 40 and 100% light, respectively, did not explain differences between the S and R biotypes in photo synthetic capacity. The S and R plants did not differ in specific leaf weight or chlorophyll content on a leaf-area basis. Lower growth rate of R plants may be responsible for inferior competitive ability of R biotypes and could be the result of an impaired photosynthetic capacity.


Sign in / Sign up

Export Citation Format

Share Document