Physics‐Based Protein Structure Refinement in the Era of Artificial Intelligence

Author(s):  
Lim Heo ◽  
Giacomo Janson ◽  
Michael Feig
Author(s):  
Di Wang ◽  
Ling Geng ◽  
Yu-Jun Zhao ◽  
Yang Yang ◽  
Yan Huang ◽  
...  

AbstractMotivationProtein structure refinement is an important step of protein structure prediction. Existing approaches have generally used a single scoring function combined with Monte Carlo method or Molecular Dynamics algorithm. The one-dimension optimization of a single energy function may take the structure too far away without a constraint. The basic motivation of our study is to reduce the bias problem caused by minimizing only a single energy function due to the very diversity of different protein structures.ResultsWe report a new Artificial Intelligence-based protein structure Refinement method called AIR. Its fundamental idea is to use multiple energy functions as multi-objectives in an effort to correct the potential inaccuracy from a single function. A multi-objective particle swarm optimization algorithm-based structure refinement is designed, where each structure is considered as a particle in the protocol. With the refinement iterations, the particles move around. The quality of particles in each iteration is evaluated by three energy functions, and the non-dominated particles are put into a set called Pareto set. After enough iteration times, particles from the Pareto set are screened and part of the top solutions are outputted as the final refined structures. The multi-objective energy function optimization strategy designed in the AIR protocol provides a different constraint view of the structure, by extending the one-dimension optimization to a new three-dimension space optimization driven by the multi-objective particle swarm optimization engine. Experimental results on CASP11, CASP12 refinement targets and blind tests in CASP 13 turn to be promising.Availability and implementationThe AIR is available online at: www.csbio.sjtu.edu.cn/bioinf/AIR/.Supplementary informationSupplementary data are available at Bioinformatics online.


1999 ◽  
Vol 285 (4) ◽  
pp. 1691-1710 ◽  
Author(s):  
Daron M. Standley ◽  
Volker A. Eyrich ◽  
Anthony K. Felts ◽  
Richard A. Friesner ◽  
Ann E. McDermott

2012 ◽  
Vol 40 (W1) ◽  
pp. W323-W328 ◽  
Author(s):  
J. P. G. L. M. Rodrigues ◽  
M. Levitt ◽  
G. Chopra

Sign in / Sign up

Export Citation Format

Share Document