Influence of Pulsed Laser Energy Deposition on Transport Properties and Structure in Trilayer Epitaxial (Y/Pr)Ba2Cu3O7—x/SrTiO3 Films

1993 ◽  
Vol 136 (1) ◽  
pp. 107-111
Author(s):  
N. G. Chechenin ◽  
A. V. Chernysh ◽  
V. V. Korneev ◽  
E. V. Monakhov ◽  
B. V. Seleznev
2022 ◽  
Author(s):  
Shankar Ghosh ◽  
Anurag Chauhan ◽  
Rohan Pattankar

AIAA Journal ◽  
2005 ◽  
Vol 43 (2) ◽  
pp. 256-269 ◽  
Author(s):  
Russell G. Adelgren ◽  
Hong Yan ◽  
Gregory S. Elliott ◽  
Doyle D. Knight ◽  
Thomas J. Beutner ◽  
...  

1993 ◽  
Vol 3 (12) ◽  
pp. 2173-2188
Author(s):  
N. G. Chechenin ◽  
A. V. Chernysh ◽  
V. V. Korneev ◽  
E. V. Monakhov ◽  
B. V. Seleznev

1995 ◽  
Vol 395 ◽  
Author(s):  
R.D. Vispute ◽  
H. Wu ◽  
K. Jagannadham ◽  
J. Narayan

ABSTRACTAIN thin films have been grown epitaxially on Si(111) and Al2O3(0001) substrates by pulsed laser deposition. These films were characterized by FTIR and UV-Visible, x-ray diffraction, high resolution transmission electron and scanning electron microscopy, and electrical resistivity. The films deposited on silicon and sapphire at 750-800°C and laser energy density of ∼ 2 to 3J/cm2 are epitaxial with an orientational relationship of AIN[0001]║ Si[111], AIN[2 110]║Si[011] and AlN[0001]║Al2O3[0001], AIN[1 2 1 0]║ Al2O3[0110] and AIN[1010] ║ Al2O3[2110]. The both AIN/Si and AIN/Al2O3 interfaces were found to be quite sharp without any indication of interfacial reactions. The absorption edge measured by UV-Visible spectroscopy for the epitaxial AIN film grown on sapphire was sharp and the band gap was found to be 6.1eV. The electrical resistivity of the films was about 5-6×l013Ω-cm with a breakdown field of 5×106V/cm. We also found that the films deposited at higher laser energy densities ≥10J/cm2 and lower temperatures ≤650°C were nitrogen deficient and containing free metallic aluminum which degrade the microstructural, electrical and optical properties of the AIN films


2016 ◽  
Vol 120 (1) ◽  
pp. 013102 ◽  
Author(s):  
Valerio Garzillo ◽  
Vytautas Jukna ◽  
Arnaud Couairon ◽  
Robertas Grigutis ◽  
Paolo Di Trapani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document