Structural and Electronic Properties of Defect-Free and Defect-Containing Polypropylene: A Computational Study by van der Waals Density-Functional Method

2017 ◽  
Vol 255 (3) ◽  
pp. 1700036 ◽  
Author(s):  
Huy-Viet Nguyen ◽  
Thinh H. Pham
2011 ◽  
Vol 268-270 ◽  
pp. 940-945
Author(s):  
Qian Ku Hu ◽  
Hai Yan Han ◽  
Hai Yan Wang ◽  
Qing Hua Wu

The structural and electronic properties of graphite-like C7N compound have been calculated by using first-principles pseudopotential density functional method for ten possible C7N configurations, which are deduced from graphite and hexagonal boron nitride unit cell. The calculated total energy results show that the configuration C7N-I with AA stacking sequence along the c-axis based on hexagonal BN structure has been shown to be the most stable structure. From the calculated electronic band structures and electron density of states, the monolayer and bulk phase of C7N are expected to show insulating and metal states, respectively. The graphite-like C7N phases have been predicted to be a stable phase at ambient conditions by formation energy and elastic constant calculations. A critical pressure of about 41 GPa is expected for a synthesis of cubic C7N phase from this graphite-like C7N.


2017 ◽  
Vol 48 ◽  
pp. 38-48 ◽  
Author(s):  
Batoul Makiabadi ◽  
Mohammad Zakarianezhad ◽  
Shahin Mohammadzamani

In this work, we have investigated the adsorption behavior of the CN radicals on electronic properties of BC2N nanotube (BC2NNT) by means of the B3LYP hybrid density functional method using 6-31G(d) basis set. The results show that CN radicals can be chemically adsorbed on the nanotube. Based on the energy analysis, the most stable position of CN radical on the nanotube is C1 site. Also, the C-side complexes are more stable than the N-side complexes. We investigated the effects of CN radicals adsorption on the electronic properties of the BC2N nanotube. According to our calculations, band gap energy of the BC2NNT decreases with increasing the number of CN radicals. It is predicted that the conductivity and reactivity of nanotube increase by increasing the number of CN radicals. Based on the NBO analysis, in all complexes charge transfer occurs from nanotube to CN radical. The AIM results show that, the Xtube…YCN interaction has covalent nature. Generally, The BC2N nanotube can be used to as sensor for nanodevice applications.


Author(s):  
Sarah Amara ◽  
Noureddine Tchouar ◽  
Salah Belaidi

In the present paper we have a focus in a study of theoretical characterization of three double headed acyclo-C-nucleosides, which are a recent target of experimental studies. The structural and electronic properties of double headed acyclo-C-nucleosides, 1,4-bis (3-mercapto-1H-1,2,4-triazol-5-yl) butane-1,2,3,4-tetrol, 1,4-bis (4-amino-5-mercapto-4H-1,2,4-triazol-3-yl) butane-1,2,3,4-tetrol and 5,5'-(1,2,3,4-tetrahydroxybutane-1,4-diyl) bis (1,3,4-oxadiazole-2(3H)-thione), have been investigated theoretically by performing semi-empirical molecular orbital, ab initio Hartree-Fock (HF) and Density Functional Theory (DFT) calculations. Geometries of the three molecules are optimized at the level of Austin Model 1 (AM1). The electronic properties and relative energies of the molecules have been calculated by HF and DFT in the ground state.


RSC Advances ◽  
2020 ◽  
Vol 10 (15) ◽  
pp. 8927-8935 ◽  
Author(s):  
Douglas Duarte de Vargas ◽  
Rogério José Baierle

Using density functional theory (DFT) calculations we investigate the structural and electronic properties of a heterogeneous van der Waals (vdW) structure consisting of silicene and NiI2 single layers.


Sign in / Sign up

Export Citation Format

Share Document