On the applicability of time-dependent density functional theory (TDDFT) and semiempirical methods to the computation of excited-state potential energy surfaces of perylene-based dye-aggregates

2016 ◽  
Vol 117 (6) ◽  
pp. e25337 ◽  
Author(s):  
Christof Walter ◽  
Veronika Krämer ◽  
Bernd Engels



Inorganics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 16
Author(s):  
Federica Arrigoni ◽  
Giuseppe Zampella ◽  
Luca De Gioia ◽  
Claudio Greco ◽  
Luca Bertini

FeIFeI Fe2(S2C3H6)(CO)6(µ-CO) (1a–CO) and its FeIFeII cationic species (2a+–CO) are the simplest model of the CO-inhibited [FeFe] hydrogenase active site, which is known to undergo CO photolysis within a temperature-dependent process whose products and mechanism are still a matter of debate. Using density functional theory (DFT) and time-dependent density functional theory (TDDFT) computations, the ground state and low-lying excited-state potential energy surfaces (PESs) of 1a–CO and 2a+–CO have been explored aimed at elucidating the dynamics of the CO photolysis yielding Fe2(S2C3H6)(CO)6 (1a) and [Fe2(S2C3H6)(CO)6]+ (2a+), two simple models of the catalytic site of the enzyme. Two main results came out from these investigations. First, a–CO and 2a+–CO are both bound with respect to any CO dissociation with the lowest free energy barriers around 10 kcal mol−1, suggesting that at least 2a+–CO may be synthesized. Second, focusing on the cationic form, we found at least two clear excited-state channels along the PESs of 2a+–CO that are unbound with respect to equatorial CO dissociation.



Author(s):  
Federica Arrigoni ◽  
Giuseppe Zampella ◽  
Luca De Gioia ◽  
Claudio Greco ◽  
Luca Bertini

FeIFeI Fe2(S2C3H6)(CO)6(µ-CO) (1a-CO) and its FeIFeII cationic species (2a+-CO) are the simplest model of the CO-inhibited [FeFe] hydrogenase active site, which is known to undergo CO photolysis within a temperature- dependent process whose products and mechanism are still a matter of debate. Using Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT) computations, the ground state and low-lying excited state potential energy surfaces (PESs) of 1a-CO and 2a+-CO have been explored aimed at elucidating the dynamics of the CO photolysis yielding Fe2(S2C3H6)(CO)6 (1a) and Fe2(S2C3H6)(CO)6+ (2a+), two simple models of the catalytic site of the enzyme. Two main results came out from these investigations. First, a-CO and 2a+-CO are both bound with respect to any CO dissociation with lowest free energy barriers around 10 kcal mol-1, suggesting that at least 2a+-CO might be synthetized. Second, focusing on the cationic form, we found at least two clear excited state channels along the PESs of 2a+-CO that are unbound with respect to equatorial CO dissociation.



RSC Advances ◽  
2021 ◽  
Author(s):  
Guanzhao Wen ◽  
Xianshao Zou ◽  
Rong Hu ◽  
Jun Peng ◽  
Zhifeng Chen ◽  
...  

Ground- and excited-states properties of N2200 have been studied by steady-state and time-resolved spectroscopies as well as time-dependent density functional theory calculations.



Sign in / Sign up

Export Citation Format

Share Document