first excited state
Recently Published Documents


TOTAL DOCUMENTS

572
(FIVE YEARS 37)

H-INDEX

36
(FIVE YEARS 3)

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2278
Author(s):  
Hao Jian ◽  
Yufeng Gao ◽  
Fanchao Dai ◽  
Jiajian Liu ◽  
Xinxing Xu ◽  
...  

The study of the origin of asymmetries in mirror β decay is extremely important to understand the fundamental nuclear force and the nuclear structure. The experiment was performed at the National Laboratory of Heavy Ion Research Facility in Lanzhou (HIRFL) to measure the β-delayed γ rays of 26P by silicon array and Clover-type high-purity Germanium (HPGe) detectors. Combining with results from the β decay of 26P and its mirror nucleus 26Na, the mirror asymmetry parameter δ ( ≡ft+/ft−− 1) was determined to be 46(13)% for the transition feeding the first excited state in the daughter nucleus. Our independent results support the conclusion that the large mirror asymmetry is close to the proton halo structure in 26P.


2021 ◽  
Vol 22 (20) ◽  
pp. 11103
Author(s):  
Ka Wa Fan ◽  
Hoi Ling Luk ◽  
David Lee Phillips

Excited state intramolecular proton transfer (ESIPT) in 3-hydroxyflavone (3HF) has been known for its dependence on excitation wavelength. Such a behavior violates Kasha’s rule, which states that the emission and photochemistry of a compound would only take place from its lowest excited state. The photochemistry of 3HF was studied using femtosecond transient absorption spectroscopy at a shorter wavelength excitation (266 nm), and these new experimental findings were interpreted with the aid of computational studies. These new results were compared with those from previous studies that were obtained with a longer wavelength excitation and show that there exists a pathway of proton transfer that bypasses the normal first excited state from the higher excited state to the tautomer from first excited state. The experimental data correlate with the electron density difference calculations such that the proton transfer process is faster on the longer excitation wavelength than compared to the shorter excitation wavelength.


Author(s):  
Yoshiharu Hirabayashi ◽  
Shigeo Ohkubo

Abstract We show the existence of the α+α * cluster structure at the highly excited energy around Ex =20 MeV in 8Be for the first time in the coupled channels calculations. An extended double folding model derived using a realistic precise cluster wave function with a well-developed N+3N cluster structure for the first excited state of 4He was employed. The calculation reproduces the experimental phase shifts in α+α scattering up to Ec.m. =21 MeV well. The result shows that the well-developed core-excited α+α * structure appears as resonances for L=0 and 2 near the α+α * threshold which correspond to the experimental states at Ex =20.20MeV and Ex =22.24MeV in 8Be.


Author(s):  
Otto Dopfer ◽  
Marko Förstel ◽  
Kai Pollow ◽  
Taarna Studemund

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Naeimeh Mohseni ◽  
Marek Narozniak ◽  
Alexey N. Pyrkov ◽  
Valentin Ivannikov ◽  
Jonathan P. Dowling ◽  
...  

AbstractIncorporating protection against quantum errors into adiabatic quantum computing (AQC) is an important task due to the inevitable presence of decoherence. Here, we investigate an error-protected encoding of the AQC Hamiltonian, where qubit ensembles are used in place of qubits. Our Hamiltonian only involves total spin operators of the ensembles, offering a simpler route towards error-corrected quantum computing. Our scheme is particularly suited to neutral atomic gases where it is possible to realize large ensemble sizes and produce ensemble-ensemble entanglement. We identify a critical ensemble size Nc where the nature of the first excited state becomes a single particle perturbation of the ground state, and the gap energy is predictable by mean-field theory. For ensemble sizes larger than Nc, the ground state becomes protected due to the presence of logically equivalent states and the AQC performance improves with N, as long as the decoherence rate is sufficiently low.


2021 ◽  
Vol 22 (6) ◽  
pp. 3159
Author(s):  
Eugene Arthur-Baidoo ◽  
Joao Ameixa ◽  
Milan Ončák ◽  
Stephan Denifl

We investigate dissociative electron attachment to tirapazamine through a crossed electron–molecule beam experiment and quantum chemical calculations. After the electron is attached and the resulting anion reaches the first excited state, D1, we suggest a fast transition into the ground electronic state through a conical intersection with a distorted triazine ring that almost coincides with the minimum in the D1 state. Through analysis of all observed dissociative pathways producing heavier ions (90–161 u), we consider the predissociation of an OH radical with possible roaming mechanism to be the common first step. This destabilizes the triazine ring and leads to dissociation of highly stable nitrogen-containing species. The benzene ring is not altered during the process. Dissociation of small anionic fragments (NO2−, CN2−, CN−, NH2−, O−) cannot be conclusively linked to the OH predissociation mechanism; however, they again do not require dissociation of the benzene ring.


2021 ◽  
Vol 766 ◽  
pp. 138339
Author(s):  
Binod Mahara ◽  
Alireza Azizi ◽  
Yong Yang ◽  
Michael Filatov ◽  
Steven R. Kirk ◽  
...  

2021 ◽  
Vol 129 (5) ◽  
pp. 627
Author(s):  
Р.М. Архипов ◽  
М.В. Архипов ◽  
А.В. Пахомов ◽  
Ю.М. Артемьев ◽  
Н.Н. Розанов

The possibility of population density grating in a gas of hydrogen atoms using a pair ultraviolet (UV) attosecond pulses that do not overlap in the medium is studied. Wherein the central frequency of the pulses can both coincide with the frequency of the resonant transition 1−2 from the main state in the first excited state (the main line of the Lyman series), and be detuned from it. The results of numerical calculations are in agreement with the analytical values ​​obtained on the basis of approximate solution of Schrödinger equation using perturbation theory. It is shown that under resonant excitation the greatest efficiency of the grating is achieved with an increase in the pulse duration. When nonresonant excitation, on the contrary, the system is more efficiently excited by short quasi-unipolar subcycle pulses than bipolar multicycle pulses. The results obtained can be applicable to coherent excitation of a single atom (thin layer) using a pair of UV pulses. The possibility of controlling the modulation depth of the gratings by changing the carrier envelope phase (CEP) of attosecond pulses is shown.


Sign in / Sign up

Export Citation Format

Share Document