scholarly journals Modeling the electronic structures of the ground and excited states of the ytterbium atom and the ytterbium dimer: A modern quantum chemistry perspective

2019 ◽  
Vol 119 (18) ◽  
Author(s):  
Paweł Tecmer ◽  
Katharina Boguslawski ◽  
Mateusz Borkowski ◽  
Piotr S. Żuchowski ◽  
Dariusz Kędziera
1995 ◽  
Vol 60 (4) ◽  
pp. 527-536 ◽  
Author(s):  
Martin Breza ◽  
Alena Manová

Using semiempirical MNDO method of quantum chemistry the optimal geometries and corresponding electronic structures of [Pb3(OH)n]6-n model systems as well as of their hydrated [Pb3(OH)n(H2O)8-n]6-n analogues (n = 4, 5) are investigated. The most stable trinuclear lead(II) complexes present in aqueous solutions correspond to cyclo-(μ3-OH)(μ2-OH)3Pb32+, Pb(μ-OH)2Pb(μ-OH)2Pb2+, cyclo-(μ3-OH)2(μ2-OH)3Pb3+, Pb(OH)(μ-OH)2Pb(μ-OH)Pb(OH)+ and Pb(OH)(μ-OH)2Pb(μ-OH)2Pb+ systems. The key role of OH bridges (by vanishing direct Pb-Pb bonds) on the stability of individual isomers is discussed.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1157
Author(s):  
Songsong Wang ◽  
Changliang Han ◽  
Liuqi Ye ◽  
Guiling Zhang ◽  
Yangyang Hu ◽  
...  

The electronic structures and transition properties of three types of triangle MoS2 clusters, A (Mo edge passivated with two S atoms), B (Mo edge passivated with one S atom), and C (S edge) have been explored using quantum chemistry methods. The highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap of B and C is larger than that of A, due to the absence of the dangling of edge S atoms. The frontier orbitals (FMOs) of A can be divided into two categories, edge states from S3p at the edge and hybrid states of Mo4d and S3p covering the whole cluster. Due to edge/corner states appearing in the FMOs of triangle MoS2 clusters, their absorption spectra show unique characteristics along with the edge structure and size.


2014 ◽  
Vol 92 (10) ◽  
pp. 979-986 ◽  
Author(s):  
Megumi Kayanuma ◽  
Chantal Daniel ◽  
Etienne Gindensperger

The absorption spectra of 11 rhenium(I) complexes with photoisomerizable stilbene-like ligands have been investigated by means of density functional theory (DFT). The electronic structures of the ground and excited states were determined for [Re(CO)3(N,N)(L)]+ (N,N = bpy (2,2′-bipyridine), phen (1,10-phenanthroline), Me4phen (3,4,7,8-tetramethyl-1,10-phenanthroline), ph2phen (4,7-diphenyl-1,10-phenanthroline), or Clphen (5-chloro-1,10-phenanthroline); L = bpe (1,2-bis(4-pyrydil)ethylene), stpy (4-styrylpyridine), or CNstpy (4-(4-cyano)styrylpyridine)) at the time–dependent (TD) DFT/CAM-B3LYP level of theory in vacuum and acetonitrile to highlight the effects of both antenna N,N and isomerizable L ligands. The TD-DFT spectra of two representative complexes, namely [Re(CO)3(bpy)(stpy)]+ and [Re(CO)3(phen)(bpe)]+, have been compared with MS-CASPT2 spectra. The TD-DFT spectra obtained in vacuum and acetonitrile agree rather well both with the ab initio and experimental spectra. The absorption spectroscopy of this series of molecules is characterized by the presence of three low-lying metal to ligand charge transfer (MLCT) states absorbing in the visible energy domain. The nature of the isomerizable ligands (bpe, stpy, or CNstpy) and the type of antenna ligands (bpy, phen, and substituted phen) control the degree of mixing between the MLCT and intraligand excited states, their relative energies, as well as their intensities.


2000 ◽  
Vol 16 (03) ◽  
pp. 238-242
Author(s):  
Li Xi-Ping ◽  
◽  
Tu Xue-Yan

2020 ◽  
Vol 49 (17) ◽  
pp. 6122-6140 ◽  
Author(s):  
Devika Sasikumar ◽  
Athira T. John ◽  
Jeswin Sunny ◽  
Mahesh Hariharan

Triplet excited states, ubiquitous in organic chromophores, can be accessed through various pathways. The feasibility of each pathway is determined by the molecular and electronic structures of the organic chromophores.


Atoms ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 70 ◽  
Author(s):  
Jen-Hao Ou ◽  
Yew Kam Ho

Knowledge of the electronic structures of atomic and molecular systems deepens our understanding of the desired system. In particular, several information-theoretic quantities, such as Shannon entropy, have been applied to quantify the extent of electron delocalization for the ground state of various systems. To explore excited states, we calculated Shannon entropy and two of its one-parameter generalizations, Rényi entropy of order α and Tsallis entropy of order α , and Onicescu Information Energy of order α for four low-lying singly excited states (1s2s 1 S e , 1s2s 3 S e , 1s3s 1 S e , and 1s3s 3 S e states) of helium. This paper compares the behavior of these three quantities of order 0.5 to 9 for the ground and four excited states. We found that, generally, a higher excited state had a larger Rényi entropy, larger Tsallis entropy, and smaller Onicescu information energy. However, this trend was not definite and the singlet–triplet reversal occurred for Rényi entropy, Tsallis entropy and Onicescu information energy at a certain range of order α .


2014 ◽  
Vol 416 ◽  
pp. 180-185 ◽  
Author(s):  
Qiang Li ◽  
Zhenhua Xiong ◽  
Hongying Xia ◽  
Feng Zhao ◽  
Wenqu Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document