High‐Fidelity Universal Quantum Controlled Gates on Electron‐Spin Qubits in Quantum Dots Inside Single‐Sided Optical Microcavities

2019 ◽  
Vol 2 (10) ◽  
pp. 1900081 ◽  
Author(s):  
Cong Cao ◽  
Yu‐Hong Han ◽  
Li Zhang ◽  
Ling Fan ◽  
Yu‐Wen Duan ◽  
...  
2019 ◽  
Vol 100 (3) ◽  
Author(s):  
F. A. Calderon-Vargas ◽  
George S. Barron ◽  
Xiu-Hao Deng ◽  
A. J. Sigillito ◽  
Edwin Barnes ◽  
...  

2005 ◽  
Vol 97 (4) ◽  
pp. 043706 ◽  
Author(s):  
Seungwon Lee ◽  
Paul von Allmen ◽  
Fabiano Oyafuso ◽  
Gerhard Klimeck ◽  
K. Birgitta Whaley

2014 ◽  
Vol 113 (15) ◽  
Author(s):  
Pascal Cerfontaine ◽  
Tim Botzem ◽  
David P. DiVincenzo ◽  
Hendrik Bluhm

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
MengKe Feng ◽  
Lin Htoo Zaw ◽  
Teck Seng Koh

AbstractThe implementation of high fidelity two-qubit gates is a bottleneck in the progress toward universal quantum computation in semiconductor quantum dot qubits. We study capacitive coupling between two triple quantum dot spin qubits encoded in the S = 1/2, Sz = −1/2 decoherence-free subspace—the exchange-only (EO) spin qubits. We report exact gate sequences for CPHASE and CNOT gates, and demonstrate theoretically, the existence of multiple two-qubit sweet spots (2QSS) in the parameter space of capacitively coupled EO qubits. Gate operations have the advantage of being all-electrical, but charge noise that couple to electrical parameters of the qubits cause decoherence. Assuming noise with a 1/f spectrum, two-qubit gate fidelities and times are calculated, which provide useful information on the noise threshold necessary for fault-tolerance. We study two-qubit gates at single and multiple parameter 2QSS. In particular, for two existing EO implementations—the resonant exchange (RX) and the always-on exchange-only (AEON) qubits—we compare two-qubit gate fidelities and times at positions in parameter space where the 2QSS are simultaneously single-qubit sweet spots (1QSS) for the RX and AEON. These results provide a potential route to the realization of high fidelity quantum computation.


2021 ◽  
pp. 2105488
Author(s):  
Andre Saraiva ◽  
Wee Han Lim ◽  
Chih Hwan Yang ◽  
Christopher C. Escott ◽  
Arne Laucht ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document