Identifying the proton transfer reaction mechanism via a proton-bound dimeric intermediate for esomeprazoles by a kinetic method combined with density functional theory calculations

2014 ◽  
Vol 28 (9) ◽  
pp. 1045-1050 ◽  
Author(s):  
Xiaoji Cao ◽  
Feifei Zhang ◽  
Kundan Zhu ◽  
Xuemin Ye ◽  
Lingxiao Shen ◽  
...  
2013 ◽  
Vol 1542 ◽  
Author(s):  
Massimo Malagoli ◽  
Angelo Bongiorno

ABSTRACTDensity functional theory calculations are used to address the energetics of protons crossing “triple phase boundaries” based on Pd and barium zirconate. Our calculations show that the proton transfer reaction at these triple phase boundaries is controlled by the terminal layer of the electrolyte in contact with the metallic catalyst and gas phase. Hydrogen spilling onto the electrolyte surface is energetically favored at peripherical sites of the metal-electrolyte interface, and proton incorporation into the sub-surface region of the electrolyte involves energies of the order of 1 eV. At the triple phase boundary, the energy cost associated with the proton transfer reaction is controlled by both the nature of chemical contact and the Schottky barrier at the metal-electrolyte interface.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1663
Author(s):  
Laixing Luo ◽  
Xing Zheng ◽  
Jianye Wang ◽  
Wu Qin ◽  
Xianbin Xiao ◽  
...  

Biomass chemical looping gasification (CLG) is a novel gasification technology for hydrogen production, where the oxygen carrier (OC) transfers lattice oxygen to catalytically oxidize fuel into syngas. However, the OC is gradually reduced, showing different reaction activities in the CLG process. Fully understanding the CLG reaction mechanism of fuel molecules on perfect and reduced OC surfaces is necessary, for which the CLG of ethanol using Fe2O3 as the OC was introduced as the probe reaction to perform density functional theory calculations to reveal the decomposition mechanism of ethanol into the synthesis gas (including H2, CH4, ethylene, formaldehyde, acetaldehyde, and CO) on perfect and reduced Fe2O3(001) surfaces. When Fe2O3(001) is reduced to FeO0.375(001), the calculated barrier energy decreases and then increases again, suggesting that the reduction state around FeO(001) favors the catalytic decomposition of ethanol to produce hydrogen, which proves that the degree of reduction has an important effect on the CLG reaction.


Computation ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 52
Author(s):  
Jerwin Jay E. Taping ◽  
Junie B. Billones ◽  
Voltaire G. Organo

Nickel(II) complexes of mono-functionalized pyridine-tetraazamacrocycles (PyMACs) are a new class of catalysts that possess promising activity similar to biological peroxidases. Experimental studies with ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), substrate) and H2O2 (oxidant) proposed that hydrogen-bonding and proton-transfer reactions facilitated by their pendant arm were responsible for their catalytic activity. In this work, density functional theory calculations were performed to unravel the influence of pendant arm functionalization on the catalytic performance of Ni(II)–PyMACs. Generated frontier orbitals suggested that Ni(II)–PyMACs activate H2O2 by satisfying two requirements: (1) the deprotonation of H2O2 to form the highly nucleophilic HOO−, and (2) the generation of low-spin, singlet state Ni(II)–PyMACs to allow the binding of HOO−. COSMO solvation-based energies revealed that the O–O Ni(II)–hydroperoxo bond, regardless of pendant arm type, ruptures favorably via heterolysis to produce high-spin (S = 1) [(L)Ni3+–O·]2+ and HO−. Aqueous solvation was found crucial in the stabilization of charged species, thereby favoring the heterolytic process over homolytic. The redox reaction of [(L)Ni3+–O·]2+ with ABTS obeyed a 1:2 stoichiometric ratio, followed by proton transfer to produce the final intermediate. The regeneration of Ni(II)–PyMACs at the final step involved the liberation of HO−, which was highly favorable when protons were readily available or when the pKa of the pendant arm was low.


2019 ◽  
Vol 48 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Chao Deng ◽  
Yingxin Sun ◽  
Yi Ren ◽  
Weihua Zhang

Density functional theory calculations were carried out to study the reaction mechanism of the Rh(iii)-catalyzed regioselective C–H cyanation of indole and indoline with N-cyano-N-phenyl-para-methylbenzenesulfonamide (NCTS).


2013 ◽  
Vol 9 ◽  
pp. 323-331 ◽  
Author(s):  
Quynh Nhu N Nguyen ◽  
Dean J Tantillo

Density functional theory calculations on mechanisms of the formation of caryolene, a putative biosynthetic precursor to caryol-1(11)-en-10-ol, reveal two mechanisms for caryolene formation: one involves a base-catalyzed deprotonation/reprotonation sequence and tertiary carbocation minimum, whereas the other (with a higher energy barrier) involves intramolecular proton transfer and the generation of a secondary carbocation minimum and a hydrogen-bridged minimum. Both mechanisms are predicted to involve concerted suprafacial/suprafacial [2 + 2] cycloadditions, whose asynchronicity allows them to avoid the constraints of orbital symmetry.


2010 ◽  
Vol 55 (27) ◽  
pp. 7975-7981 ◽  
Author(s):  
Vladimir Tripković ◽  
Egill Skúlason ◽  
Samira Siahrostami ◽  
Jens K. Nørskov ◽  
Jan Rossmeisl

Sign in / Sign up

Export Citation Format

Share Document