scholarly journals Caryolene-forming carbocation rearrangements

2013 ◽  
Vol 9 ◽  
pp. 323-331 ◽  
Author(s):  
Quynh Nhu N Nguyen ◽  
Dean J Tantillo

Density functional theory calculations on mechanisms of the formation of caryolene, a putative biosynthetic precursor to caryol-1(11)-en-10-ol, reveal two mechanisms for caryolene formation: one involves a base-catalyzed deprotonation/reprotonation sequence and tertiary carbocation minimum, whereas the other (with a higher energy barrier) involves intramolecular proton transfer and the generation of a secondary carbocation minimum and a hydrogen-bridged minimum. Both mechanisms are predicted to involve concerted suprafacial/suprafacial [2 + 2] cycloadditions, whose asynchronicity allows them to avoid the constraints of orbital symmetry.

Computation ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 52
Author(s):  
Jerwin Jay E. Taping ◽  
Junie B. Billones ◽  
Voltaire G. Organo

Nickel(II) complexes of mono-functionalized pyridine-tetraazamacrocycles (PyMACs) are a new class of catalysts that possess promising activity similar to biological peroxidases. Experimental studies with ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), substrate) and H2O2 (oxidant) proposed that hydrogen-bonding and proton-transfer reactions facilitated by their pendant arm were responsible for their catalytic activity. In this work, density functional theory calculations were performed to unravel the influence of pendant arm functionalization on the catalytic performance of Ni(II)–PyMACs. Generated frontier orbitals suggested that Ni(II)–PyMACs activate H2O2 by satisfying two requirements: (1) the deprotonation of H2O2 to form the highly nucleophilic HOO−, and (2) the generation of low-spin, singlet state Ni(II)–PyMACs to allow the binding of HOO−. COSMO solvation-based energies revealed that the O–O Ni(II)–hydroperoxo bond, regardless of pendant arm type, ruptures favorably via heterolysis to produce high-spin (S = 1) [(L)Ni3+–O·]2+ and HO−. Aqueous solvation was found crucial in the stabilization of charged species, thereby favoring the heterolytic process over homolytic. The redox reaction of [(L)Ni3+–O·]2+ with ABTS obeyed a 1:2 stoichiometric ratio, followed by proton transfer to produce the final intermediate. The regeneration of Ni(II)–PyMACs at the final step involved the liberation of HO−, which was highly favorable when protons were readily available or when the pKa of the pendant arm was low.


2015 ◽  
Vol 17 (18) ◽  
pp. 11990-11999 ◽  
Author(s):  
Jinfeng Zhao ◽  
Junsheng Chen ◽  
Jianyong Liu ◽  
Mark R. Hoffmann

The excited state intramolecular proton transfer (ESIPT) mechanism of HBO, BBHQ and DHBO have been investigated using time-dependent density functional theory (TDDFT).


Molecules ◽  
2018 ◽  
Vol 23 (5) ◽  
pp. 1231 ◽  
Author(s):  
Fabricio de Carvalho ◽  
Maurício Coutinho Neto ◽  
Fernando Bartoloni ◽  
Paula Homem-de-Mello

2017 ◽  
Vol 897 ◽  
pp. 269-274 ◽  
Author(s):  
András Csóré ◽  
Ádám Gali

Paramagnetic defects in solids have become attractive systems for quantum computing as well as magnetometry in recent years. One of the leading contenders is the negatively charged nitrogen-vacancy defect (NV center) in diamond proposed to be highly promising with respect the afore-mentioned applications. In our study we investigate the NCVSi defect in 3C, 4H and 6H SiC as alternative choices with superior properties. Electronic structure of NV center in SiC exhibits S = 1 triplet ground state with the possibility of optical spin polarization. On the other hand, our results obtained by density functional theory calculations may contribute to unambiguously identify the possible defect configurations.


2019 ◽  
Vol 21 (45) ◽  
pp. 25226-25246 ◽  
Author(s):  
Kuntal Chatterjee ◽  
Otto Dopfer

Infrared spectroscopy and density functional theory calculations of protonated benzonitrile–(H2O)n clusters reveal proton transfer to solvent for n ≥ 2 and the drastic effects of the aromatic dopant molecule on the network of H+(H2O)n+1.


Sign in / Sign up

Export Citation Format

Share Document