scholarly journals Identification of vicinal diols using a diagnostic ion derived from the electron ionization of orthoester functional groups

2020 ◽  
Vol 34 (24) ◽  
Author(s):  
Renzo Alexander Samame ◽  
Chengli Zu ◽  
Daniel Knueppel
2020 ◽  
Author(s):  
Alexis Wolfel ◽  
Cecilia Inés Alvarez Igarzabal ◽  
Marcelo Ricardo Romero

<p>Design of materials with novel sensitivities and smart behaviour is important for the development of smart systems with automated responsiveness. We have recently reported the synthesis of hydrogels, cross-linked by <i>N,N'</i>-diallyltartardiamide (DAT). The covalent DAT-crosslinking points have vicinal diols which can be easily cleaved with periodate, generating valuable a-oxo-aldehyde functional groups, useful for further chemical modification. Based on those findings, we envisioned that a self-healable hydrogel could be obtained by incorporation of primary amino functional groups, from <a>2-aminoethyl methacrylate </a>hydrochloride (AEMA), coexisting with DAT into the same network. The a-oxo-aldehyde groups generated after the reaction with periodate would arise in the immediate environment of amine groups to form imine cross-links. For this purpose, DAT-crosslinked hydrogels were synthesized and carefully characterized. The cleavage of DAT-crosslinks with periodate promoted changes in the mechanical and swelling properties of the materials. As expected, a self-healing behavior was observed, based on the spontaneous formation of imine covalent bonds. In addition, we surprisingly found a combination of fast vicinal diols cleavage and a low speed self-crosslinking reaction by imine formation. Consequently, it was found a time-window in which a periodate-treated polymer was obtained in a transient liquid state, which can be exploited to choose the final shape of the material, before automated gelling. The singular properties attained on these hydrogels could be useful for developing sensors, actuators, among other smart systems.</p>


2013 ◽  
Vol 85 (6) ◽  
pp. 1175-1184 ◽  
Author(s):  
Robert D. C. Pullin ◽  
Radosław M. Lipiński ◽  
Timothy J. Donohoe

The osmium-catalyzed oxidative cyclization of vicinal diols onto proximal olefins to generate 2,5-cis-substituted tetrahydrofurans (THFs) has been exploited as the key step for the construction of several complex THF-containing natural products, namely, the annonaceous acetogenins cis-sylvaticin, sylvaticin, and the excitatory amino acid neo-dysiherbaine A. Recently modified conditions that employ a Lewis acid enable the cyclization to proceed under milder conditions, providing greater tolerance to acid-sensitive functional groups, as demonstrated in two of the syntheses. Flexibility for the construction of 2,5-trans-THFs was demonstrated in the synthesis of sylvaticin by utilization of an intramolecular hydride-shift sequence.


2020 ◽  
Author(s):  
Alexis Wolfel ◽  
Cecilia Inés Alvarez Igarzabal ◽  
Marcelo Ricardo Romero

<p>Design of materials with novel sensitivities and smart behaviour is important for the development of smart systems with automated responsiveness. We have recently reported the synthesis of hydrogels, cross-linked by <i>N,N'</i>-diallyltartardiamide (DAT). The covalent DAT-crosslinking points have vicinal diols which can be easily cleaved with periodate, generating valuable a-oxo-aldehyde functional groups, useful for further chemical modification. Based on those findings, we envisioned that a self-healable hydrogel could be obtained by incorporation of primary amino functional groups, from <a>2-aminoethyl methacrylate </a>hydrochloride (AEMA), coexisting with DAT into the same network. The a-oxo-aldehyde groups generated after the reaction with periodate would arise in the immediate environment of amine groups to form imine cross-links. For this purpose, DAT-crosslinked hydrogels were synthesized and carefully characterized. The cleavage of DAT-crosslinks with periodate promoted changes in the mechanical and swelling properties of the materials. As expected, a self-healing behavior was observed, based on the spontaneous formation of imine covalent bonds. In addition, we surprisingly found a combination of fast vicinal diols cleavage and a low speed self-crosslinking reaction by imine formation. Consequently, it was found a time-window in which a periodate-treated polymer was obtained in a transient liquid state, which can be exploited to choose the final shape of the material, before automated gelling. The singular properties attained on these hydrogels could be useful for developing sensors, actuators, among other smart systems.</p>


1990 ◽  
Vol 25 (10) ◽  
pp. 527-536 ◽  
Author(s):  
Pierre Longevialle ◽  
Guy Bouchoux ◽  
Yannik Hoppilliard

Sign in / Sign up

Export Citation Format

Share Document