swelling properties
Recently Published Documents


TOTAL DOCUMENTS

856
(FIVE YEARS 229)

H-INDEX

54
(FIVE YEARS 6)

2022 ◽  
Vol 23 (2) ◽  
pp. 910
Author(s):  
Ji-Xin Li ◽  
Shu-Xiang Zhao ◽  
Yu-Qing Zhang

This paper describes the use of silk protein, including fibroin and sericin, from an alkaline solution of Ca(OH)2 for the clean degumming of silk, which is neutralized by sulfuric acid to create calcium salt precipitation. The whole sericin (WS) can not only be recycled, but completely degummed silk fibroin (SF) is also obtained in this process. The inner layers of sericin (ILS) were also prepared from the degummed silk in boiling water by 120 °C water treatment. When the three silk proteins (SPs) were individually grafted with glycidyl methacrylate (GMA), three grafted silk proteins (G-SF, G-WS, G-ILS) were obtained. After adding I2959 (a photoinitiator), the SP bioinks were prepared with phosphate buffer (PBS) and subsequently bioprinted into various SP scaffolds with a 3D network structure. The compressive strength of the SF/ILS (20%) scaffold added to G-ILS was 45% higher than that of the SF scaffold alone. The thermal decomposition temperatures of the SF/WS (10%) and SF/ILS (20%) scaffolds, mainly composed of a β-sheet structures, were 3 °C and 2 °C higher than that of the SF scaffold alone, respectively. The swelling properties and resistance to protease hydrolysis of the SP scaffolds containing sericin were improved. The bovine insulin release rates reached 61% and 56% after 5 days. The L929 cells adhered, stretched, and proliferated well on the SP composite scaffold. Thus, the SP bioinks obtained could be used to print different types of SP composite scaffolds adapted to a variety of applications, including cells, drugs, tissues, etc. The techniques described here provide potential new applications for the recycling and utilization of sericin, which is a waste product of silk processing.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 212
Author(s):  
Shuai Zhang ◽  
Yu Wan ◽  
Weijie Yuan ◽  
Yaoxiang Zhang ◽  
Ziyuan Zhou ◽  
...  

Hydrogels are highly hydrophilic polymers that have been used in a wide range of applications. In this study, we prepared PVA–CS/SA–Ca2+ core–shell hydrogels with bilayer space by cross-linking PVA and CS to form a core structure and chelating SA and Ca2+ to form a shell structure to achieve multiple substance loading and multifunctional expression. The morphology and structure of core–shell hydrogels were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The factors affecting the swelling properties of the hydrogel were studied. The results show that the PVA–CS/SA–Ca2+ hydrogel has obvious core and shell structures. The SA concentration and SA/Ca2+ cross-linking time show a positive correlation with the thickness of the shell structure; the PVA/CS mass ratio affects the structural characteristics of the core structure; and a higher CS content indicates the more obvious three-dimensional network structure of the hydrogel. The optimal experimental conditions for the swelling degree of the core–shell hydrogel were an SA concentration of 5%; an SA/Ca2+ cross-linking time of 90 min; a PVA/CS mass ratio of 1:0.7; and a maximum swelling degree of 50 g/g.


2022 ◽  
Author(s):  
Maximilian Moser ◽  
Yazhou Wang ◽  
Tania Cecilia Hidalgo ◽  
Hailiang Liao ◽  
Yaping Yu ◽  
...  

Propylene and butylene glycol oligoether chains have been employed as alternatives to ethylene glycol in thiophene based semiconductors for OECTs. Their impact on electrochemical, microstructure, and swelling properties are discussed.


Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
Marija M. Babić Radić ◽  
Vuk V. Filipović ◽  
Marija Vukomanović ◽  
Jasmina Nikodinović Runić ◽  
Simonida Lj. Tomić

The design and evaluation of novel 2-hydroxyethyl methacrylate/gelatin/alginate/graphene oxide hydrogels as innovative scaffolding biomaterials, which concurrently are the suitable drug delivery carrier, was proposed. The hydrogels were prepared by the adapted porogen leaching method; this is also the first time this method has been used to incorporate nanocolloidal graphene oxide through the hydrogel and simultaneously form porous structures. The effects of a material’s composition on its chemical, morphological, mechanical, and swelling properties, as well as on cell viability and in vitro degradation, were assessed using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), measurements of Young’s modulus, gravimeter method and MTT test, respectively. The engineered hydrogels show good swelling capacity, fully hydrophilic surfaces, tunable porosity (from 56 to 76%) and mechanical properties (from 1.69 to 4.78 MPa), curcumin entrapment efficiency above 99% and excellent curcumin release performances. In vitro cytotoxicity on healthy human fibroblast (MRC5 cells) by MTT test reveal that the materials are nontoxic and biocompatible, proposing novel hydrogels for in vivo clinical evaluation to optimize tissue regeneration treatments by coupling the hydrogels with cells and different active agents to create material/biofactor hybrids with new levels of biofunctionality.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 37
Author(s):  
Magdalena Głąb ◽  
Anna Drabczyk ◽  
Sonia Kudłacik-Kramarczyk ◽  
Magdalena Kędzierska ◽  
Agnieszka Tomala ◽  
...  

Nowadays, a great attention is directed into development of innovative multifunctional composites which may support bone tissue regeneration. This may be achieved by combining collagen and hydroxyapatite showing bioactivity, osteoconductivity and osteoinductivity with such biocompatible polymers as polyvinylpyrrolidone (PVP) and poly(vinyl alcohol) (PVA). Here PVA/PVP-based composites modified with hydroxyapatite (HAp, 10 wt.%) and collagen (30 wt.%) were obtained via UV radiation while two types of collagen were used (fish and bovine) and crosslinking agents differing in the average molecular weight. Next, their chemical structure was characterized using Fourier transform infrared (FT-IR) spectroscopy, roughness of their surfaces was determined using a stylus contact profilometer while their wettability was evaluated by a sessile drop method followed by the measurements of their surface free energy. Subsequently, swelling properties of composites were verified in simulated physiological liquids as well as the behavior of composites in these liquids by pH measurements. It was proved that collagen-modified composites showed higher swelling ability (even 25% more) compared to unmodified ones, surface roughness, biocompatibility towards simulated physiological liquids and hydrophilicity (contact angles lower than 90°). Considering physicochemical properties of developed materials and a possibility of the preparation of their various shapes and sizes, it may be concluded that developed materials showed great application potential for biomedical use, e.g., as materials filling bone defects supporting their treatments and promoting bone tissue regeneration due to the presence of hydroxyapatite with osteoinductive and osteoconductive properties.


Author(s):  
A. D. Moroz ◽  
S. S. Dryabina ◽  
M. A. Vaniev ◽  
Zh. N. Malysheva ◽  
I. A. Novakov

In this work, graft copolymers of chitosan with trimethylmethacryloxyethylammonium methyl sulfate were synthesized by the method of controlled radical polymerization, and it was found that replacing the dimethylformamide aprotic solvent with water increases the degree of grafting. With the aim of the possible use of chitosan copolymers as a functional component for regulating the water-swelling properties of elastomers, the kinetics of swelling of the samples was investigated. An increase in the degree of swelling of the copolymers in comparison with the initial chitosan was revealed, and the influence of the molecular weight and the conditions of their synthesis was established.


2021 ◽  
Author(s):  
Haizhou Tian ◽  
Sha Cheng ◽  
Jianghong Zhen ◽  
Ziqiang Lei

Abstract Superabsorbent polymers have important applications in many fields, but insufficiency of water/salt absorbency, water retention, and swelling rate limit its application development. Herein, we fabricated HEC-g-P (AA-co-AMPS)/laterite by aqueous solution polymerization, the structure and morphology of the superabsorbent polymer were characterized by FTIR, SEM and TG/DTG. The optimal water absorbency of the superabsorbent polymer were 1294 g/g, 177 g/g, and 119 g/g in distilled water, tap water, and 0.9 wt% NaCl solution, respectively. The superabsorbent polymer had good water retention and re-swelling properties at different temperatures, and fast water absorption rate, and reached swelling equilibrium at 5 min. The swelling mechanism of the superabsorbent polymer was explained by the pseudo-second-order swelling kinetics model and Ritger-Peppas model. The effect of the amount of hydrogel on the water evaporation rate in soil was studied, and it had a good effect.


2021 ◽  
Author(s):  
Jonas Landsgesell ◽  
David Beyer ◽  
Pascal Hebbeker ◽  
Peter Košovan ◽  
Christian Holm

The swelling of polyelectrolyte hydrogels has been often explained using simple models derived from the Flory-Rehner model. While these models qualitatively predict the experimentally observed trends, they also introduce strong approximations and neglect some important contributions. Consequently, they sometimes incorrectly ascribe the observed trends to contributions which are of minor importance under the given conditions. In this work, we investigate the swelling properties of weak (pH-responsive) polyelectrolyte gels at various pH and salt concentrations, using a hierarchy of models, gradually introducing various approximations. For the first time, we introduce a three-dimensional particle-based model which accounts for the topology of the hydrogel network, for electrostatic interactions between gel segments and small ions and for acid-base equilibrium coupled to the Donnan partitioning of small ions. This model is the most accurate one, therefore, we use it as a reference when assessing the effect of various approximations. As the first approximation, we introduce the affine deformation, which allows us to replace the network of many chains by a single chain, while retaining the particle-based representation. In the next step, we use the mean-field approximation to replace particles by density fields, combining the Poisson-Boltzmann equation with elastic stretching of the chain. Finally, we introduce an ideal gel model by neglecting the electrostatics while retaining all other features of the previous model. Comparing predictions from all four models allows us to understand which contributions dominate at high or low pH or salt concentrations. We observe that the field-based models overestimate the ionization degree of the gel because they underestimate the electrostatic interactions. Nevertheless, a cancellation of effects on the electrostatic interactions and Donnan partitioning causes that both particle-based and field-based models consistently predict the swelling of the gels as a function of pH and salt concentration. Thus, we can conclude that any of the employed models can rationalize the known experimental trends in gel swelling, however, only the particle-based models fully account for the true effects causing these trends. The full understanding of differences between various models is important when interpreting experimental results in the framework of existing theories and for ascribing the observed trends to particular contributions, such as the Donnan partitioning of ions, osmotic pressure or electrostatic interactions.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4231
Author(s):  
Mohamed S. A. Darwish ◽  
Laila M. Al-Harbi

Volatile organic compounds pollute the environment and pose a serious threat to human health due to their toxicity, mutagenicity, and carcinogenicity. In this context, it is highly desirable to fabricate high-performance poly (dimethylsiloxane) (PDMS) composites to remove organic solvents from the environment using a simple technique. Therefore, in the present study, Fe-PDMS composites were fabricated using a technique based on magnetic induction heating with iron particles serving as a self-heating agent. Under an alternating magnetic field, the iron particles served as a thermal source that assisted in the progression of PDMS crosslinking. The influence of self-heating iron on the properties of the fabricated Fe-PDMS composites was also investigated. The hydrosilation reaction occurring during the crosslinking process was controlled using FT-IR. The heating efficiency of PDMS 1, PDMS 2, and PDMS 3 was studied as the function of induction time (0–5 min) and the function of iron content (0%, 1%, and 30% wt.%). The results revealed that the mechanical properties of the PDMS 2 composite were enhanced compared to those of the PDMS 1 and PDMS 3 composites. The mechanical properties of PDMS 3 were the least efficient due to cluster formation. PDMS 3 exhibited the highest thermal stability among all composites. Furthermore, the swelling behavior of different materials in various organic solvents was studied. PDMS was observed to swell to the greatest extent in chloroform, while swelling to a large extent was observed in toluene, pentane, and petroleum ether. PDMS swelling was the least in n-butanol. The elastomeric behavior of crosslinked PDMS, together with its magnetic character, produces stimuli-responsive magneto-rheological composites, which are quite efficient and suitable for applications involving the removal of organic solvents.


Sign in / Sign up

Export Citation Format

Share Document