Researches on adsorption electrodes V. Glass electrode, ion exchange and electrode properties

1943 ◽  
Vol 62 (12) ◽  
pp. 784-792 ◽  
Author(s):  
H. J. C. Tendeloo ◽  
A. J. Zwart Voorspuij
Keyword(s):  
1995 ◽  
Vol 142 (10) ◽  
pp. L175-L176 ◽  
Author(s):  
Chia‐Ming Huang ◽  
Y. C. Jean ◽  
K. L. Cheng ◽  
F. C. Chang

2016 ◽  
Vol 22 (1-2) ◽  
Author(s):  
Markéta Camfrlová ◽  
Karel Vybíhal ◽  
Jiří Faimon

The sample of perthitic alkali feldspar (62.5 wt. % of KAlSi3O8 and 37.5 wt. % of albite, Na0,996Ca0,004Al1,004Si2,996O8) was dissolved in a special stirred batch reactor (polyethylene vessel of 5 liter volume situated horizontally and rotating at few rotations per hour). The reactor was opened to atmosphere (log PCO2 ~ -3.5) through the mouth at the vessel axis. During the experiment, pH was monitored by pH-meter with combined glass electrode. Solutions were analyzed for Si, Al (spectrophotometry), K, Na (flame AAS), and Ca (ICP-OES). The results showed a fast preferential leaching of alkaline cations with respect to both Al and Si during the early stages of experiment that was diminishing during more advanced stages of the experiment. The released cations exceeded the consumed H+ ions by the range of two up to four magnitudes. The preponderance of cations over H+ ions was especially apparent during few initial days, when the buffering by atmospheric CO2 was insufficient. Simulation of the process by the PHREEQC code covering the CO2 buffering indicated that system feldspar–water–CO2(g) was evolving near the equilibrium in open system during the period after 5th day of the experiment. The results suggested that the mechanism of feldspar dissolution during the initial stages of the process does not correspond to a simple ion exchange and that it is more complicated.


Author(s):  
Ann M. Thomas ◽  
Virginia Shemeley

Those samples which swell rapidly when exposed to water are, at best, difficult to section for transmission electron microscopy. Some materials literally burst out of the embedding block with the first pass by the knife, and even the most rapid cutting cycle produces sections of limited value. Many ion exchange resins swell in water; some undergo irreversible structural changes when dried. We developed our embedding procedure to handle this type of sample, but it should be applicable to many materials that present similar sectioning difficulties.The purpose of our embedding procedure is to build up a cross-linking network throughout the sample, while it is in a water swollen state. Our procedure was suggested to us by the work of Rosenberg, where he mentioned the formation of a tridimensional structure by the polymerization of the GMA biproduct, triglycol dimethacrylate.


Sign in / Sign up

Export Citation Format

Share Document