Finite‐time boundedness of sliding mode control under periodic event‐triggered strategy

2020 ◽  
Vol 31 (2) ◽  
pp. 623-639
Author(s):  
Jiarui Li ◽  
Yugang Niu ◽  
Jun Song
2021 ◽  
Author(s):  
Junchao Ren ◽  
xuejiao Li

Abstract This paper investigates the projection synchronization problem of stochastic neural networked systems based on event-triggered sliding mode control (SMC) covering a finite-time period. For improve transmission efficiency and save network resources, a related event-triggered scheme is proposed for the error system, which can identify whether the measurement error should be transmitted to the controller. For finite-time projective synchronization under given event-triggered mechanism, a semi-Markov jump system model is proposed. Secondly, by creating Lyapunov Krasovsky functional and using linear matrix inequality (LMI) technology, as well as considering a proper sliding surface, a sliding mode controller is designed to implement finite-time projection synchronization of different neural networks. Finally, numerical simulations are exploited to illustrate the effectiveness of the main results.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Junchao Ren ◽  
Jie Sun ◽  
Fangfang Li

Abstract This paper investigates the problem of observer-based finite time sliding mode control (SMC) for a class of one-sided Lipschitz (OSL) systems with uncertainties. The parameter uncertainties are assumed to be time-varying norm-bounded appearing not only in both the state and output matrices but also in the nonlinear function. For a time interval [0,T], we divide it into two parts: one part is the reaching phase within [0,T*] and another part is the sliding motion phase within [T*,T]. First, the reachability of the sliding mode surface with T*≤T is proved. Next, several conditions are proposed which ensure robust finite time boundedness (FTB) of the corresponding closed-loop systems in the interval [0,T*] and [T*,T], respectively. Then, the sufficient conditions, which guarantee robust finite time boundedness of the closed-loop system in whole time interval [0,T], are given in terms of linear matrix inequalities (LMIs), and further the robust observer and controller can be designed in an LMI frame. A convex optimization problem subject to LMIs is formulated to optimize the desired performance indices of interest to us. Finally, a practical example is given to demonstrate the effectiveness of the proposed methods.


2020 ◽  
Vol 53 (2) ◽  
pp. 5069-5074
Author(s):  
Jiarui Li ◽  
Yugang Niu ◽  
Bei Chen

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xiang Dong ◽  
Chengcheng Ren ◽  
Shuping He ◽  
Long Cheng ◽  
Shuo Wang

<p style='text-indent:20px;'>In order to solve the control problem of Underwater Vehicle with Manipulator System (UVMS), this paper proposes a finite-time sliding mode control strategy via T-S fuzzy approach. From the general dynamic model of UVMS and considering the influence between the manipulator and the underwater vehicle, hydrodynamic damping, buoyancy and gravity as the fuzzy items, we establish global fuzzy dynamic model and design a closed-loop fuzzy sliding mode controller. We prove the model in theory from two aspects: the reachability of sliding domain and the finite-time boundedness. We also give the solution of the controller gain. A simulation on the actual four joint dynamic model of UVMS with two fuzzy subsystems is carried out to verify the effectiveness of this method.</p>


2020 ◽  
Vol 67 (10) ◽  
pp. 2084-2088
Author(s):  
Lei Wang ◽  
Zhuoyue Song ◽  
Xiangdong Liu ◽  
Zhen Li ◽  
Tyrone Fernando ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document