Finite-time boundedness of uncertain Hamiltonian systems via sliding mode control approach

Author(s):  
Xinyu Lv ◽  
Yugang Niu ◽  
Jun Song
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Xu Guowei ◽  
Wan Zhenkai ◽  
Li Chunqing

A sliding mode control approach is achieved for Lorenz system based on optimal finite time convergent and integral sliding mode surface. The system perturbation is divided into two parts: the unmatched and the matched parts. Firstly, we design a discontinuous control for the unmatched part which will not be amplified. Secondly, we design a continuous control, that is, the ideal control to stabilize the Lorenz system error states in finite time stabilization. Then the controller based on integral sliding mode is constructed to ensure the robustness. The proposed method is proven to guarantee the stability and the robustness using the Lyapunov theory in the system uncertainties and external perturbation. Finally, the numerical simulations demonstrate that the proposed controller is effective and robust with respect to the perturbation.


2019 ◽  
Vol 52 (5-6) ◽  
pp. 720-728
Author(s):  
Huawei Niu ◽  
Qixun Lan ◽  
Yamei Liu ◽  
Huafeng Xu

In this article, the continuous integral terminal sliding mode control problem for a class of uncertain nonlinear systems is investigated. First of all, based on homogeneous system theory, a global finite-time control law with simple structure is proposed for a chain of integrators. Then, inspired by the proposed finite-time control law, a novel integral terminal sliding mode surface is designed, based on which an integral terminal sliding mode control law is constructed for a class of higher order nonlinear systems subject disturbances. Furthermore, a finite-time disturbance observer-based integral terminal sliding mode control law is proposed, and strict theoretical analysis shows that the composite integral terminal sliding mode control approach can eliminate chattering completely without losing disturbance attenuation ability and performance robustness of integral terminal sliding mode control. Simulation examples are given to illustrate the simplicity of the new design approach and effectiveness.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Junchao Ren ◽  
Jie Sun ◽  
Fangfang Li

Abstract This paper investigates the problem of observer-based finite time sliding mode control (SMC) for a class of one-sided Lipschitz (OSL) systems with uncertainties. The parameter uncertainties are assumed to be time-varying norm-bounded appearing not only in both the state and output matrices but also in the nonlinear function. For a time interval [0,T], we divide it into two parts: one part is the reaching phase within [0,T*] and another part is the sliding motion phase within [T*,T]. First, the reachability of the sliding mode surface with T*≤T is proved. Next, several conditions are proposed which ensure robust finite time boundedness (FTB) of the corresponding closed-loop systems in the interval [0,T*] and [T*,T], respectively. Then, the sufficient conditions, which guarantee robust finite time boundedness of the closed-loop system in whole time interval [0,T], are given in terms of linear matrix inequalities (LMIs), and further the robust observer and controller can be designed in an LMI frame. A convex optimization problem subject to LMIs is formulated to optimize the desired performance indices of interest to us. Finally, a practical example is given to demonstrate the effectiveness of the proposed methods.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xiang Dong ◽  
Chengcheng Ren ◽  
Shuping He ◽  
Long Cheng ◽  
Shuo Wang

<p style='text-indent:20px;'>In order to solve the control problem of Underwater Vehicle with Manipulator System (UVMS), this paper proposes a finite-time sliding mode control strategy via T-S fuzzy approach. From the general dynamic model of UVMS and considering the influence between the manipulator and the underwater vehicle, hydrodynamic damping, buoyancy and gravity as the fuzzy items, we establish global fuzzy dynamic model and design a closed-loop fuzzy sliding mode controller. We prove the model in theory from two aspects: the reachability of sliding domain and the finite-time boundedness. We also give the solution of the controller gain. A simulation on the actual four joint dynamic model of UVMS with two fuzzy subsystems is carried out to verify the effectiveness of this method.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Nan Liu ◽  
Rui Ling ◽  
Qin Huang ◽  
Zheren Zhu

Consensus tracking problem of the leader-follower multiagent systems is resolved via second-order super-twisting sliding mode control approach. The followers’ states can keep consistent with the leader’s states on sliding surfaces. The proposed approach can ensure the finite-time consensus if the directed graph of the nonlinear system has a directed path under the condition that leader’s control input is unavailable to any followers. It is proved by using the finite-time Lyapunov stability theory. Simulation results verify availability of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document