Complex survival trial design by the product integration method

2021 ◽  
Author(s):  
Yongqiang Tang
2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Safa’ Hamdan ◽  
Naji Qatanani ◽  
Adnan Daraghmeh

Two numerical techniques, namely, Haar Wavelet and the product integration methods, have been employed to give an approximate solution of the fractional Volterra integral equation of the second kind. To test the applicability and efficiency of the numerical method, two illustrative examples with known exact solution are presented. Numerical results show clearly that the accuracy of these methods are in a good agreement with the exact solution. A comparison between these methods shows that the product integration method provides more accurate results than its counterpart.


2016 ◽  
Vol 21 (6) ◽  
pp. 774-793 ◽  
Author(s):  
Laurence Grammont ◽  
Mario Ahues ◽  
Hanane Kaboul

A Fredholm integral equation of the second kind in L1([a, b], C) with a weakly singular kernel is considered. Sufficient conditions are given for the existence and uniqueness of the solution. We adapt the product integration method proposed in C0 ([a, b], C) to apply it in L1 ([a, b], C), and discretize the equation. To improve the accuracy of the approximate solution, we use different iterative refinement schemes which we compare one to each other. Numerical evidence is given with an application in Astrophysics.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahlem Nemer ◽  
Hanane Kaboul ◽  
Zouhir Mokhtari

Abstract In this paper, we consider general cases of linear Volterra integral equations under minimal assumptions on their weakly singular kernels and introduce a new product integration method in which we involve the linear interpolation to get a better approximate solution, figure out its effect and also we provide a convergence proof. Furthermore, we apply our method to a numerical example and conclude this paper by adding a conclusion


PAMM ◽  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Manuel Wieland ◽  
Walter Arne ◽  
Robert Feßler ◽  
Nicole Marheineke ◽  
Raimund Wegener

Sign in / Sign up

Export Citation Format

Share Document