singular kernels
Recently Published Documents


TOTAL DOCUMENTS

285
(FIVE YEARS 100)

H-INDEX

25
(FIVE YEARS 6)

2022 ◽  
Vol 8 ◽  
pp. 66-73
Author(s):  
Mykola Yaremenko

In this article, we establish new characterizations of convex functions, prove some connected convex type integral inequality; consider the pair of convex functions as the dual semi-norms in functional space. The properties of the integral operators are considered in the scales of the convex semi-norm under the standard conditions on singular kernels.


2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Khadijeh Sadri ◽  
Kamyar Hosseini ◽  
Dumitru Baleanu ◽  
Soheil Salahshour ◽  
Choonkil Park

In the present work, the numerical solution of fractional delay integro-differential equations (FDIDEs) with weakly singular kernels is addressed by designing a Vieta–Fibonacci collocation method. These equations play immense roles in scientific fields, such as astrophysics, economy, control, biology, and electro-dynamics. The emerged fractional derivative is in the Caputo sense. By resultant operational matrices related to the Vieta–Fibonacci polynomials (VFPs) for the first time accompanied by the collocation method, the problem taken into consideration is converted into a system of algebraic equations, the solving of which leads to an approximate solution to the main problem. The existence and uniqueness of the solution of this category of fractional delay singular integro-differential equations (FDSIDEs) are investigated and proved using Krasnoselskii’s fixed-point theorem. A new formula for extracting the VFPs and their derivatives is given, and the orthogonality of the derivatives of VFPs is easily proved via it. An error bound of the residual function is estimated in a Vieta–Fibonacci-weighted Sobolev space, which shows that by properly choosing the number of terms of the series solution, the approximation error tends to zero. Ultimately, the designed algorithm is examined on four FDIDEs, whose results display the simple implementation and accuracy of the proposed scheme, compared to ones obtained from previous methods. Furthermore, the orthogonality of the VFPs leads to having sparse operational matrices, which makes the execution of the presented method easy.


Author(s):  
Rajarama Mohan Jena ◽  
Snehashish Chakraverty

Abstract Dynamical behaviors of the time-fractional nonlinear model of the coupled spring-mass system with damping have been explored here. Fractional derivatives with singular and non-singular kernels are used to assess the suggested model. The fractional Adams-Bashforth numerical method based on Lagrange polynomial interpolation is applied to solve the system with non-local operators. Existence, Ulam-Hyers stability, and uniqueness of the solution are established by using fixed-point theory and nonlinear analysis. Further, the error analysis of the present method has also been included. Finally, the behavior of the solution is explained by graphical representations through numerical simulations.


2021 ◽  
Vol 5 (3) ◽  
pp. 90
Author(s):  
Arvet Pedas ◽  
Mikk Vikerpuur

We consider general linear multi-term Caputo fractional integro-differential equations with weakly singular kernels subject to local or non-local boundary conditions. Using an integral equation reformulation of the proposed problem, we first study the existence, uniqueness and regularity of the exact solution. Based on the obtained regularity properties and spline collocation techniques, the numerical solution of the problem is discussed. Optimal global convergence estimates are derived and a superconvergence result for a special choice of grid and collocation parameters is given. A numerical illustration is also presented.


Sign in / Sign up

Export Citation Format

Share Document