Building Homogenous Li 2 TiO 3 Coating Layer on Primary Particles to Stabilize Li‐Rich Mn‐Based Cathode Materials

Small ◽  
2022 ◽  
pp. 2106337
Author(s):  
Jiuding Liu ◽  
Zhonghan Wu ◽  
Meng Yu ◽  
Honglu Hu ◽  
Yudong Zhang ◽  
...  
2010 ◽  
Vol 17 (01) ◽  
pp. 51-58 ◽  
Author(s):  
JEONG-HUN JU ◽  
YOUNG-MIN CHUNG ◽  
YU-RIM BAK ◽  
MOON-JIN HWANG ◽  
KWANG-SUN RYU

Carbon nano-coated LiNi 0.8 Co 0.15 Al 0.05 O 2/ C (LNCAO/C) cathode-active materials were prepared by a sol–gel method and investigated as the cathode material for lithium ion batteries. Electrochemical properties including the galvanostatic charge–discharge ability and cyclic voltammogram behavior were measured. Cyclic voltammetry (2.7–4.8 V) showed that the carbon nano-coating improved the "formation" of the LNCAO electrode, which was related to the increased electronic conductivity between the primary particles. The carbon nano-coated LNCAO/C exhibited good electrochemical performance at high C -rate. Also, the thermal stability at a highly oxidized state of the carbon nano-coated LNCAO was remarkably enhanced. The carbon nano-coating layer can serve as a physical and/or (electro-)chemical protection shell for the underlying LNCAO, which is attributed to an increase of the grain connectivity (physical part) and also to the protection of metal oxide from chemical reactions (chemical part).


Ionics ◽  
2020 ◽  
Vol 26 (10) ◽  
pp. 4937-4948
Author(s):  
Leiwu Tian ◽  
Haifeng Yuan ◽  
Qinjun Shao ◽  
Syed Danish Ali Zaidi ◽  
Chong Wang ◽  
...  

2020 ◽  
Vol 20 (6) ◽  
pp. 3460-3465
Author(s):  
Mi-Ra Shin ◽  
Seon-Jin Lee ◽  
Seong-Jae Kim ◽  
Tae-Whan Hong

Surface coating using (3-aminopropyl)triethoxysilane (APTES) has been applied to improve the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials. The APTES coating layer on the surface of NCM523 protects the direct contact area between the cathode material and the electrolyte, and facilitates the presence of electrons through the abundance of electron-rich amine groups, thereby improving electrochemical performance. X-ray photoelectron spectroscopy confirmed the existence of APTES coating layers on the surface of NCM523 cathode materials, revealing three peaks—N1s, O1s, and Si1s—that were not identified in bare NCM523. In addition, the discharge capacities of the bare electrode and the APTES-coated NCM523 electrode were 121.06 mAh/g and 156.43 mAh/g, respectively. To the best of our knowledge, the use of an APTES coating on NCM523 cathode materials for lithium-ion batteries has never been reported.


Ionics ◽  
2018 ◽  
Vol 25 (6) ◽  
pp. 2469-2476 ◽  
Author(s):  
ZhenDong Hao ◽  
XiaoLong Xu ◽  
SiXu Deng ◽  
Hao Wang ◽  
JingBing Liu ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (27) ◽  
pp. 22625-22632 ◽  
Author(s):  
Honglong Zhang ◽  
Bing Li ◽  
Jing Wang ◽  
Bihe Wu ◽  
Tao Fu ◽  
...  

The Li2MnO3-coated LiNi0.8Co0.1Mn0.1O2 shows a higher discharge capacity and a better capacity retention. The coating layer can protect the NCM active materials from CO2, suppressing the formation of Li2CO3 on the surface of NCM materials.


Sign in / Sign up

Export Citation Format

Share Document