coating layers
Recently Published Documents


TOTAL DOCUMENTS

437
(FIVE YEARS 112)

H-INDEX

25
(FIVE YEARS 5)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 112
Author(s):  
Faezeh Fathi ◽  
Samad N. Ebrahimi ◽  
João A. V. Prior ◽  
Susana M. L. Machado ◽  
Reza Mohsenian Kouchaksaraee ◽  
...  

Designing strategies for an effective transformation of food waste into high-value products is a priority to address environmental sustainability concerns. Coffee silverskin is the major by-product of the coffee roasting industry, being rich in compounds with health benefits. Such composition gives it the potential to be transformed into high-value products. In this study, coffee silverskin extracts were enriched, regarding caffeine and chlorogenic acid contents, by adsorbent column chromatography. The compounds content increased 3.08- and 2.75-fold, respectively, compared to the original extract. The enriched fractions were loaded into nano-phytosomes or cholesterol-incorporated nano-phytosomes (first coating layers) to improve the physiochemical properties and permeation rate. These nano-lipid carriers were also subjected to a secondary coating with different natural polymers to improve protection and stability against degradation. In parallel, and for comparison, different natural polymers were also used as first coating layers. The produced particles were evaluated regarding product yield, encapsulation efficiency, loading capacity, particle size, surface charge, and in vitro release simulating gastrointestinal conditions. All samples exhibited anionic surface charge. FTIR and molecular docking confirmed interactions between the phytoconstituents and lipid bilayers. The best docking score was observed for 5-caffeoylquinic acid (chlorogenic acid) exhibiting a stronger hydrogen binding to the lipid bilayer. Among several kinetic models tested, the particle release mechanism fitted well with the First-order, Korsmeyer–Peppas, and Higuchi models. Moreover, most of the formulated particles followed the diffusion-Fick law and anomalous transport.


Author(s):  
Sunil Rawal ◽  
Sabrina H. Buer ◽  
J. Robby Sanders ◽  
Pedro E. Arce

Abstract Among the large family of emergent pharmaceutical contaminants, we find acetaminophen (ACE) that critically needs to be removed from wastewater. Advanced Oxidation Process (AOP) have proven effective in the degradation of large molecular contaminants from water. To the best of our knowledge this is the first study reported on the degradation of ACE based on immobilized TiO2 thin films. In an effort to increase the understanding of the efficiency of the degradation process, an in-depth investigation of the effects of the structure, i.e., coating layers and the amount of surface, i.e., number of coated slides used, is needed. Transparent, anatase-form TiO2 thin films were prepared via the sol-gel method (Rawal, S., S. Buer, J. R. Sanders, and P. E. Arce. 2021. “Photocatalytic Degradation of Acetaminophen from Water Solutions Via Thin Films. Part I: Synthesis and Characterization of TiO2 Thin Films.” International Journal of Reactor Engineering [Accepted]) and deposited onto glass microscope slides using a novel spraying technique, with coatings ranging from one to 10 layers. This contribution summarizes the effect of several key factors including initial concentration of the ACE, the number of coating layers (6, 8, and 10) on the glass slides and the number (4 and 6) of slides on the degradation levels for three selected media, e.g., acid, neutral and base. Comparisons studies, supported by statistical analysis between two different sets (4 and 6) of slides with discussion of potential physical-chemical reasons behind the behaviors are reported. Finally, global, first order kinetic rate constants are also reported for the different conditions used in the investigation. Although further research would be needed, in general the results are promising for the potential degradation of ACE in continuous flow systems by using immobilized TiO2 on surfaces as thin films.


2021 ◽  
Vol 14 (4) ◽  
pp. 13-25
Author(s):  
Noor Abdulkareem AL-Ali ◽  
Makarim H. Abdulkareem ◽  
Iman Adnan Anoon

In this study, two systems of bio-ceramic coating (45S5 bioactive glass and hydroxyapatite) were used in order to compare between them for biomedical applications. Each system consists from two layers of coating done by electrophoretic deposition (EPD) technique on 316L stainless steel material as substrate. Two types of biopolymer were used (Chitosan with Gelatin) as first layer of coating. Taguchi approach with L9 array was used in order to choose the best conditions (concentrations, voltage and time) for coating layers. Each system consists of two layer (biopolymer (first layer) and bioceramic (second layer)) materials. The optimum parameters for first layer of biopolymer was (3g/L concentration, 20 voltage and 3 minute) while optimum parameter for second layer (6g/L concentration, 30 voltage and 1 minute) for two bioceramic group. Zeta potential test were employed to measure suspensions stability. The tape test method was used to evaluate the adhesion between substrate and coating layers, the results show that the percentage of removal area for optimum coating layer (biopolymer, 45S5 BG and HA   8.06%, 10.668%, 6.23% subsequently). XRD inspection was used for identify the phases of coating layers. The Cyclic polarization test was used for evaluation of pitting corrosion resistance, the results show all layers gives good corrosion resistance but 45S5BG gives the best corrosion resistance when compared with HA system.


2021 ◽  
Vol 88 (6) ◽  
pp. 895-899
Author(s):  
A. V. Danilchyk ◽  
A. V. Nagornyi ◽  
N. V. Rzheutskyi ◽  
A. G. Voinilovich ◽  
V. N. Pavlovskyi ◽  
...  

We investigated the radiative properties of InGaN/GaN heterostructures with multiple quantum wells (MQWs) grown on silicon substrates with different thicknesses of quantum wells at optical excitation. The correlation of laser and photoluminescent properties with the surface morphology of the gallium nitride coating layers and the density of V-defects has been established. It is shown that, with a growth in the density of V-defects, the threshold power density of the excitation of the generation of InGaN/GaN heterostructures with MQWs increases.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6799
Author(s):  
Matteo Poddighe ◽  
Plinio Innocenzi

Fabrication of hydrophobic thin films from a liquid phase is a hot topic with critical technological issues. Interest in the production of hydrophobic surfaces is growing steadily due to their wide applications in several industrial fields. Thin films from liquid phases can be deposited on different types of surfaces using a wide variety of techniques, while the design of the precursor solution offers the possibility of fine-tuning the properties of the hydrophobic coating layers. A general trend is the design of multifunctional films, which have different properties besides being hydrophobic. In the present review, we have described the synthesis through sol–gel processing of hydrophobic films enlightening the main achievements obtained in the field.


2021 ◽  
Vol 902 ◽  
pp. 121-125
Author(s):  
Anna Pamela O. De Jesus ◽  
Mark Paul Selda Rivarez ◽  
Ranzivelle Marianne L. Roxas-Villanueva ◽  
Marvin U. Herrera

Shelf life in ground and tree nuts are often assessed based on aesthetic appearance, nut integrity, color and most importantly, taste and edibleness. Nuts with considerable level of rancidity and free fatty acids due to degradation of oils indicate expiration or decay. We prepared a shellac-lemongrass oil blend coating using food-grade ingredients and assessed its potential to extend shelf life of Pili nut (Canarium ovatum) kernels. A glossy, hard but considerably brittle coating for the pili kernels were prepared with varying numbers of layers. On average, the mass of coating added per dip is 0.10 g, and the thickness of 5-layers of coating is 0.3 mm. The obtained reflectance spectra of the coated pili kernels implied the translucent nature of the coating, but becomes opaque as the number of layers are increased. Peroxide value (PV) and free fatty acid value (FFAV), were also measured at 10 days after application of coating. PV was lowest in the nuts with 5 coating layers, while this treatment did not reduce FFAV. These results indicate the effectiveness of our coatings in preventing peroxide production probably by blocking oxygen penetration and ultraviolet exposure, which are important triggers production of peroxide and other free radicals. Further tests and time-series experiments are planned to assess the dynamics of peroxide levels and the overall potential of our coating technology for Pili nut.


2021 ◽  
Vol MA2021-02 (1) ◽  
pp. 136-136
Author(s):  
Marcela Calpa ◽  
Nataly Rosero-Navarro ◽  
Akira Miura ◽  
Kiyoharu Tadanaga

Sign in / Sign up

Export Citation Format

Share Document