scholarly journals HEART : Unrelated parallel machines problem with precedence constraints for task scheduling in cloud computing using heuristic and meta‐heuristic algorithms

2020 ◽  
Vol 50 (12) ◽  
pp. 2231-2251 ◽  
Author(s):  
Amit Kumar Bhardwaj ◽  
Yuvraj Gajpal ◽  
Chirag Surti ◽  
Sukhpal Singh Gill
2021 ◽  
Vol 11 (20) ◽  
pp. 9360
Author(s):  
Kaibin Li ◽  
Zhiping Peng ◽  
Delong Cui ◽  
Qirui Li

Task scheduling is key to performance optimization and resource management in cloud computing systems. Because of its complexity, it has been defined as an NP problem. We introduce an online scheme to solve the problem of task scheduling under a dynamic load in the cloud environment. After analyzing the process, we propose a server level agreement constraint adaptive online task scheduling algorithm based on double deep Q-learning (SLA-DQTS) to reduce the makespan, cost, and average overdue time under the constraints of virtual machine (VM) resources and deadlines. In the algorithm, we prevent the change of the model input dimension with the number of VMs by taking the Gaussian distribution of related parameters as a part of the state space. Through the design of the reward function, the model can be optimized for different goals and task loads. We evaluate the performance of the algorithm by comparing it with three heuristic algorithms (Min-Min, random, and round robin) under different loads. The results show that the algorithm in this paper can achieve similar or better results than the comparison algorithms at a lower cost.


Cloud Computing provides the sharing ability and access for available cloud host and various distributed environments, namely Load Balancing (LB), virtualization technologies and scheduling techniques. The satisfaction of both users and cloud providers are the major issues for effective LB and task scheduling algorithms in cloud resource management, where the requirements namely high resource utilization, low monetary costs and minimum makespan. Many researchers tried to develop various heuristic and meta-heuristic algorithms to attain the aforementioned user requirements. But, when the number of tasks grows exponentially, these algorithms failed to achieve LB, lower running time, and it faces the high time complexity. In this research work, a KD-Tree algorithm is developed to address the issues of heuristic algorithms and provide efficient LB by partitioning the environments into several tasks. According to the deadline of task execution, the remaining tasks are adjusted dynamically by the proposed KD-tree algorithm in the virtual environment. The experiments are conducted to evaluate the efficiency of KD-Tree algorithm with existing heuristic techniques by using makespan, energy consumption and task migrations. When the number of tasks is 20, the proposed KD-Tree algorithm achieved 71.33% makespan and 5% task migrations.


Nowadays, with the huge development of information and computing technologies, the cloud computing is becoming the highly scalable and widely computing technology used in the world that bases on pay-per-use, remotely access, Internet-based and on-demand concepts in which providing customers with a shared of configurable resources. But, with the highly incoming user’s requests, the task scheduling and resource allocation are becoming major requirements for efficient and effective load balancing of a workload among cloud resources to enhance the overall cloud system performance. For these reasons, various types of task scheduling algorithms are introduced such as traditional, heuristic, and meta-heuristic. A heuristic task scheduling algorithms like MET, MCT, Min-Min, and Max-Min are playing an important role for solving the task scheduling problem. This paper proposes a new hybrid algorithm in cloud computing environment that based on two heuristic algorithms; Min-Min and Max-Min algorithms. To evaluate this algorithm, the Cloudsim simulator has been used with different optimization parameters; makespan, average of resource utilization, load balancing, average of waiting time and concurrent execution between small length tasks and long size tasks. The results show that the proposed algorithm is better than the two algorithms Min-Min and Max-Min for those parameters


Sign in / Sign up

Export Citation Format

Share Document