Equivalent mechanical model for tuned liquid damper of complex tank geometry coupled to a 2D structure

2013 ◽  
Vol 21 (1) ◽  
pp. 43-60 ◽  
Author(s):  
J. S. Love ◽  
M. J. Tait
2013 ◽  
Vol 135 (1) ◽  
Author(s):  
J. S. Love ◽  
M. J. Tait

Tuned liquid dampers (TLDs) utilize sloshing fluid to absorb and dissipate structural vibrational energy, thereby reducing wind induced dynamic motion. By selecting the appropriate tank length, width, and fluid depth, a rectangular TLD can control two structural sway modes simultaneously if the TLD tank is aligned with the principal axes of the structure. This study considers the influence of the TLD tank orientation on the behavior of a 2D structure-TLD system. The sloshing fluid is represented using a linearized equivalent mechanical model. The mechanical model is coupled to a 2D structure at an angle with respect to the principal axes of the structure. Equations of motion for the system are developed using Lagrange’s equation. If the TLD and structure are not aligned, the system responds as a coupled four degree of freedom system. The proposed model is validated by conducting structure-TLD system tests. The predicted and experimental structural displacements and fluid response are in agreement. An approximate method is developed to provide an initial estimate of the structural response based on an effective mass ratio. The results of this study show that for small TLD orientation angles, the performance of the TLD is insensitive to TLD orientation.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
K. P. McNamara ◽  
J. S. Love ◽  
M. J. Tait ◽  
T. C. Haskett

Abstract Annular tuned liquid dampers (TLDs) may be installed in slender structures with limited floor space, in which people and utilities must pass through the core, such as a wind turbine or observation tower. This study investigates an annular-shaped TLD equipped with damping screens. A linearized equivalent mechanical model capable of capturing the fundamental sloshing mode response of an annular TLD is presented. An experimental shake table testing program is completed to assess the performance of the model. Thirty-six frequency sweep tests consisting of various TLD configurations, excitation amplitudes, and excitation directions are completed. Good agreement is observed between the linearized equivalent mechanical model and experimental wave heights, sloshing forces, and energy dissipated per cycle that have been filtered to include only the fundamental sloshing mode response. The model is also observed to be in good agreement with experimental data for different excitation directions. The model is coupled to a generalized structure to investigate the response of a structure equipped with an annular TLD. The annular TLD is found to reduce the response of a generalized offshore wind turbine structure undergoing harmonic force excitation. The annular TLD provides performance comparable to an optimal linear tuned mass damper (TMD) with the same properties for a range of force excitation amplitudes.


2015 ◽  
Vol 85 ◽  
pp. 1175-1183 ◽  
Author(s):  
Yu Liu ◽  
Daogang Lu ◽  
Junjie Dang ◽  
Shu Wang ◽  
Xiaojia Zeng

Author(s):  
Yuanjin Ji ◽  
Lihui Ren ◽  
Jian Wang ◽  
Dao Gong

The wheel–rail contact can be found in two patterns. In the first pattern, the treads of both wheels are in contact with the two top surfaces of the ^-shaped guide rail; in the second pattern, the treads of both wheels are in contact with the two top surfaces of the ^-shaped guide rail, and the wheel edge is in contact with the guide rail web on one side. Based on these findings, an equivalent mechanical model with four unilateral springs is proposed to describe the wheel–rail contact. Additionally, a dynamic model of the Translohr tramway is established using Matlab/Simulink. The wheel–rail contact in a tramway moving along curves with different radii is calculated using simulation, and the results obtained are consistent with the observations and results of field measurements. The effects of various factors, including curve radius, tram speed, guide rail pre-pressure, and guide rod length, on the side wear of the guide rail were investigated. The results revealed that curve radius and tram speed are the critical factors affecting rail track side wear. These two factors can qualitatively determine rail track side wear, while other factors can only quantitatively affect the degree of rail track side wear.


Sign in / Sign up

Export Citation Format

Share Document