real time simulation
Recently Published Documents


TOTAL DOCUMENTS

2005
(FIVE YEARS 385)

H-INDEX

41
(FIVE YEARS 7)

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3185
Author(s):  
Dachuan Yu ◽  
Niancheng Zhou ◽  
Yongjie Luo ◽  
Le Dong ◽  
Zan Jia

In recent years, cross-platform co-simulation has become an important development direction of the real-time simulation of power systems. Model segmentation is at the core of the realization of cross-platform joint simulation and parallel real-time simulation of these systems. In essence, it is based on the deep application of a system-decoupling algorithm. In order to solve problems that a single interface cannot, it considers the data interaction of large- and small-step systems at the same time This paper proposes an improved joint-simulation strategy based on the model-segmentation method for the cross-platform joint-simulation technology of a large-scale, flexible direct-power grid sent by the wind farms of RT-lab and Hypersim. Firstly, by studying several common interface algorithms in the current project, the adaptability of different interface algorithms is analyzed. Secondly, the problem of high-frequency oscillation caused by the inductance-decoupling algorithm is improved, and an improved segmentation-model algorithm is proposed. Finally, according to the adaptability, each interface algorithm is applied to the wind-power-based, flexible direct-transmission, dual-platform simulation model that was built for this study. The simulation results verify the feasibility of the improved interface in system decoupling and platform interfacing, and indicate the significantly improved accuracy and stability of the system.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8547
Author(s):  
Jane Marchand ◽  
Ajay Shetgaonkar ◽  
Jose Luis Rueda Torres ◽  
Aleksandra Lekic ◽  
Peter Palensky

Due to their weak nature, such as low inertia, offshore energy hubs are prone to unprecedented fast dynamic phenomena. This can lead to undesired instability problems. Recent literature, with main focus on onshore systems, suggests that electrolysers could be an attractive option to support wind generators in the mitigation of balancing problems. This paper presents an Electromagnetic Transient (EMT) model for real-time simulation based study of the dynamics of active power and voltage responses of offshore hubs due to wind speed fluctuations. The purpose of this study was to ascertain the ability of an electrolyser to support an offshore energy hub under different scenarios and with different locations of the electrolyser. Two locations of Proton Exchange Membrane (PEM) electrolysers were considered: centralised (at the AC common bus of the hub) or distributed (at the DC link of the wind turbines). Numerical simulations conducted in RSCAD® on a 2 GW offshore hub with 4 × 500 MW wind power plants and 330 or 600 MW PEM electrolysers show that electrolysers can effectively support the mitigation of sudden wind speed variations, irrespective of the location. The distributed location of electrolysers can be beneficial to prevent large spillage of wind power generation during the isolation of faults within the hub.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012018
Author(s):  
Gao Xinyuan ◽  
Gu Kanru ◽  
Zhou Qianru

Abstract Hardware in the Loop (HIL) semi-physical real-time simulation can shorten the research period and complete the harsh working condition test, which is difficult to be carried out on the physical platform. Taking the off-grid Doubly Fed Induction Generator (DFIG) wind power system as the research object, this paper proposes the bottom modelling method of HIL real-time simulation. Using the Hardware Description Language VERILOG, the bottom real-time models of DFIG, converter and load are designed on Field Programmable Gate Array (FPGA), connected with the real controller, and the HIL real-time simulation platform is constructed. The experiments of conventional working conditions and unbalance load are carried out on the HIL platform and the physical platform. The operation speed of the HIL platform reaches 0.48μs. Compared with the physical platform, the error of HIL platform is between 1.17 ~ 3.29% under various working conditions.


2021 ◽  
Author(s):  
Sisi Pan ◽  
Wei Jiang ◽  
Hua Geng ◽  
Jieyun Wang ◽  
Ming Li

2021 ◽  
Author(s):  
Indrazno Siradjuddin ◽  
Leonardo Kamajaya ◽  
Sapto Wibowo ◽  
Arta Ainur Rofiq ◽  
Gillang Al Azhar ◽  
...  

2021 ◽  
Vol 2108 (1) ◽  
pp. 012030
Author(s):  
Lei Wang ◽  
Hongjun Zhang ◽  
Hui Hu ◽  
Liping Hao ◽  
Wei Xu

Abstract Modular multilevel converter (MMC) contains a large number of power electronic switching devices. The modeling method based on switching circuit model needs a lot of resources and the simulation speed is slow, so it is difficult to realize large-scale real-time simulation of electromagnetic transient. A MMC electromagnetic transient numerical modeling method based on ideal transformer model (ITM) is presented. Firstly, the MMC system is divided into the main circuit network and the sub module group network by ITM method, and the error caused by decoupling delay in serial and parallel real time simulation is compensated respectively by interpolation prediction and advanced interpolation prediction. Secondly, the capacitor in sub module is discreted respectively by trapezoidal integration method, backward Euler method and Gear-2 method. Based on the above numerical integration, the difference equations of capacitance voltage, capacitance current and output voltage of half bridge and full bridge sub modules are derived. Then, in order to improve the calculation speed, a simplified numerical model of half bridge and full bridge sub module based on switching function is proposed. Finally, the MMC based on switching circuit model runs off-line simulation in the simulation software, and the above MMC numerical modeling method runs real-time simulation in Speedgoat real-time simulator. The off-line and real-time simulation results of the MMC numerical modeling method and the switching circuit model are compared. And the simulation results verify the feasibility and effectiveness of the above MMC numerical modeling method in real time simulation.


Sign in / Sign up

Export Citation Format

Share Document