scholarly journals Response regimes in equivalent mechanical model of strongly nonlinear liquid sloshing

2017 ◽  
Vol 94 ◽  
pp. 146-159 ◽  
Author(s):  
M. Farid ◽  
O.V. Gendelman
1967 ◽  
Vol 34 (3) ◽  
pp. 555-562 ◽  
Author(s):  
F. T. Dodge ◽  
L. R. Garza

Analyses and experimental comparisons are given for liquid sloshing in a rigid cylindrical tank under conditions of moderately small axial accelerations; in particular, the theory is valid for Bond numbers larger than 10. The analytical results are put in the form of an equivalent mechanical model, and it is shown that the sloshing mass and the natural frequency of the first mode, for a liquid having a 0 deg contact angle at the tank walls, are smaller than for high-g conditions. The experimental data, obtained by using several small-diameter tanks and three different liquids, are compared to the predictions of the mechanical model; good correlation is found in most cases for the sloshing forces and natural frequency as a function of Bond number.


2011 ◽  
Vol 68 (1-2) ◽  
pp. 91-100 ◽  
Author(s):  
Qing Li ◽  
Xingrui Ma ◽  
Tianshu Wang

2013 ◽  
Vol 397-400 ◽  
pp. 209-212 ◽  
Author(s):  
Li Xin Zhang ◽  
Zheng Feng Bai ◽  
Yang Zhao ◽  
Xi Bin Cao

Liquid sloshing is the source of disturbance. General the equivalent mechanical models are used to simulate the liquid sloshing in container. In this paper, the equivalent pendulum model for liquid sloshing is established. Further, the parameter relationship between the equivalent spring-mass model and equivalent pendulum model is presented. Then, parameter determination process of the equivalent mechanical model is proposed. Finally, a numerical example is implemented to calculate the parameters of equivalent model for liquid sloshing in a container.


1987 ◽  
Vol 109 (1) ◽  
pp. 58-63 ◽  
Author(s):  
F. T. Dodge ◽  
D. D. Kana

The sloshing of liquids in tanks that use a flexible, inextensible bladder to contain the liquid is investigated experimentally and theoretically. The bladder affects both the configuration of the liquid in the tank and the sloshing frequencies and motion. The governing equations of liquid sloshing coupled to the structural dynamics of the bladder are formulated and examined to determine the interaction between the body forces of the liquid and the stiffness of the bladder and to show that the slosh dynamics can be represented by equivalent mechanical models. Tests are conducted to establish such mechanical models for normal and low-gravity conditions. For an inverted tank (liquid above the bladder), the sloshing is sufficiently different from conventional sloshing that the form of the equivalent mechanical model as well as the numerical values of the model parameters must be derived from the test results.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Zheng Xue-lian ◽  
Li Xian-sheng ◽  
Ren Yuan-yuan

This paper reports a new approach to investigating sloshing forces and moments caused by liquid sloshing within partially filled tank vehicles subjected to lateral excitations. An equivalent mechanical model is used in the paper to approximately simulate liquid sloshing. The mechanical model is derived by calculating the trajectory of the center of gravity of the liquid bulk in tanks as the vehicle’s lateral acceleration changes from 0 to 1 g. Parametric expressions for the model are obtained by matching the dynamic effect of the mechanical model to that of liquid sloshing. And parameter values of a liquid sloshing dynamic effect, such as sloshing frequency and forces, are acquired using FLUENT to simulate liquid sloshing in tanks with different cross-sections and liquid fill percentages. The equivalent mechanical model for liquid sloshing in tank vehicles is of a great significance for simplifying the research on roll stability of tank vehicles and for developing active/passive roll control systems for these vehicles.


2013 ◽  
Vol 135 (1) ◽  
Author(s):  
J. S. Love ◽  
M. J. Tait

Tuned liquid dampers (TLDs) utilize sloshing fluid to absorb and dissipate structural vibrational energy, thereby reducing wind induced dynamic motion. By selecting the appropriate tank length, width, and fluid depth, a rectangular TLD can control two structural sway modes simultaneously if the TLD tank is aligned with the principal axes of the structure. This study considers the influence of the TLD tank orientation on the behavior of a 2D structure-TLD system. The sloshing fluid is represented using a linearized equivalent mechanical model. The mechanical model is coupled to a 2D structure at an angle with respect to the principal axes of the structure. Equations of motion for the system are developed using Lagrange’s equation. If the TLD and structure are not aligned, the system responds as a coupled four degree of freedom system. The proposed model is validated by conducting structure-TLD system tests. The predicted and experimental structural displacements and fluid response are in agreement. An approximate method is developed to provide an initial estimate of the structural response based on an effective mass ratio. The results of this study show that for small TLD orientation angles, the performance of the TLD is insensitive to TLD orientation.


Sign in / Sign up

Export Citation Format

Share Document