scholarly journals Damage detection based on damping analysis of ambient vibration data

2008 ◽  
pp. n/a-n/a ◽  
Author(s):  
Michele Frizzarin ◽  
Maria Q. Feng ◽  
Paolo Franchetti ◽  
Serdar Soyoz ◽  
Claudio Modena
Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3135 ◽  
Author(s):  
Ying Wang ◽  
Wensheng Lu ◽  
Kaoshan Dai ◽  
Miaomiao Yuan ◽  
Shen-En Chen

When constructed on tall building rooftops, the vertical axis wind turbine (VAWT) has the potential of power generation in highly urbanized areas. In this paper, the ambient dynamic responses of a rooftop VAWT were investigated. The dynamic analysis was based on ambient measurements of the structural vibration of the VAWT (including the supporting structure), which resides on the top of a 24-story building. To help process the ambient vibration data, an automated algorithm based on stochastic subspace identification (SSI) with a fast clustering procedure was developed. The algorithm was applied to the vibration data for mode identification, and the results indicate interesting modal responses that may be affected by the building vibration, which have significant implications for the condition monitoring strategy for the VAWT. The environmental effects on the ambient vibration data were also investigated. It was found that the blade rotation speed contributes the most to the vibration responses.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012058
Author(s):  
Chen Wang ◽  
Zhilin Xue ◽  
Yipeng Su ◽  
Binbin Li

Abstract Bayesian FFT algorithm is a popular method to identify modal parameters, e.g., modal frequencies, damping ratios, and mode shapes, of civil structures under operational conditions. It is efficient and provides the identification uncertainty in terms of posterior distribution. However, in utilizing the Bayesian FFT algorithm, it is tedious to manually select frequency bands and initial frequencies. This step requires professional knowledge and costs most of time, which prevents the automation of Bayesian FFT algorithm. Regarding the band selection as an object detection problem, we design a band selection network based on the RetinaNet to automatically select frequency bands and a peak prediction network to predict the initial frequencies. The designed networks are trained using the singular value spectrum of measured ambient vibration data and verified by various data sets. It can achieve the human accuracy with much less operation time, and thus provides a corner stone for the automation of Bayesian FFT algorithm.


2013 ◽  
Vol 13 (05) ◽  
pp. 1250082 ◽  
Author(s):  
XIAO-QING ZHOU ◽  
WEN HUANG

In vibration-based structural damage detection, it is necessary to discriminate the variation of structural properties due to environmental changes from those caused by structural damages. The present paper aims to investigate the temperature effect on vibration-based structural damage detection in which the vibration data are measured under varying temperature conditions. A simply-supported slab was tested in laboratory to extract the vibration properties with modal testing. The slab was then damaged and the modal testing was conducted again, in which the temperature varied. The modal data measured under different temperature conditions were used to detect the damage with a two-stage model updating technique. Some damage was falsely detected if the temperature variation was not considered. Natural frequencies were then corrected to those under the same temperature conditions according to the relation between the temperature and material modulus. It is shown that all of the damaged elements can be accurately identified.


Sign in / Sign up

Export Citation Format

Share Document