Smooth switching control for transfer from the Automatic Traveling Mode to the Power Assist Mode of the Skill-Assist

2007 ◽  
Vol 2 (4) ◽  
pp. 479-481 ◽  
Author(s):  
Suwoong Lee ◽  
Seong-Sik Yoon ◽  
Susumu Hara ◽  
Yoji Yamada
Author(s):  
Anye Zhou ◽  
Siyuan Gong ◽  
Chaojie Wang ◽  
Srinivas Peeta

Vehicle-to-vehicle communications can be unreliable because of interference and information congestion, which leads to the dynamic information flow topology (IFT) in a platoon of connected and autonomous vehicles. Some existing studies adaptively switch the controller of cooperative adaptive cruise control (CACC) to optimize string stability when IFT varies. However, the difference of transient response between controllers can induce uncomfortable jerks at switching instances, significantly affecting riding comfort and jeopardizing vehicle powertrain. To improve riding comfort while maintaining string stability, the authors introduce a smooth-switching control-based CACC scheme with IFT optimization (CACC-SOIFT) by implementing a bi-layer optimization model and a Kalman predictor. The first optimization layer balances the probability of communication failure and control performance optimally, generating a robust IFT to reduce controller switching. The second optimization layer adjusts the controller parameters to minimize tracking error and the undesired jerk. Further, a Kalman predictor is applied to predict vehicle acceleration if communication failures occur. It is also used to estimate the states of preceding vehicles to suppress the measurement noise and the acceleration disturbance. The effectiveness of the proposed CACC-SOIFT is validated through numerical experiments based on NGSIM field data. Results indicate that the CACC-SOIFT framework can guarantee string stability and riding comfort in the environment of dynamic IFT.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5731
Author(s):  
Anxing Liu ◽  
Haisheng Yu

To solve the contradiction between dynamic performance and steady-state performance of the robot system, a smooth-switching control strategy is proposed. By combining robot and motor model, the complete model of the robot driving system is established. The single-loop Feedback Linearization (FL) controller and Port-Controlled Hamiltonian (PCH) controller based on the complete model are derived to ensure the rapidity and stability of the system respectively. A smooth-switching function based on position error is designed. It can ensure the smooth-switching between two controllers and avoid the instability caused by switch-switching. The proposed algorithm can make the robot system have good dynamic and steady performance. Simulation and experiment results demonstrate the effectiveness of the smooth-switch control strategy.


Author(s):  
Pang-Chia Chen ◽  
Sun-Li Wu ◽  
Hung-Shiang Chuang

Sign in / Sign up

Export Citation Format

Share Document