An optimal power flow algorithm for AC/DC hybrid power systems with VSC-based MTDC considering converter power losses and voltage-droop control strategy

2018 ◽  
Vol 13 (12) ◽  
pp. 1690-1698 ◽  
Author(s):  
Zhicheng Li ◽  
Jinghan He ◽  
Yin Xu ◽  
Xiaojun Wang
2020 ◽  
Vol 34 (01) ◽  
pp. 630-637 ◽  
Author(s):  
Ferdinando Fioretto ◽  
Terrence W.K. Mak ◽  
Pascal Van Hentenryck

The Optimal Power Flow (OPF) problem is a fundamental building block for the optimization of electrical power systems. It is nonlinear and nonconvex and computes the generator setpoints for power and voltage, given a set of load demands. It is often solved repeatedly under various conditions, either in real-time or in large-scale studies. This need is further exacerbated by the increasing stochasticity of power systems due to renewable energy sources in front and behind the meter. To address these challenges, this paper presents a deep learning approach to the OPF. The learning model exploits the information available in the similar states of the system (which is commonly available in practical applications), as well as a dual Lagrangian method to satisfy the physical and engineering constraints present in the OPF. The proposed model is evaluated on a large collection of realistic medium-sized power systems. The experimental results show that its predictions are highly accurate with average errors as low as 0.2%. Additionally, the proposed approach is shown to improve the accuracy of the widely adopted linear DC approximation by at least two orders of magnitude.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3164 ◽  
Author(s):  
Yuwei Chen ◽  
Ji Xiang ◽  
Yanjun Li

Optimal power flow (OPF) is a non-linear and non-convex problem that seeks the optimization of a power system operation point to minimize the total generation costs or transmission losses. This study proposes an OPF model considering current margins in radial networks. The objective function of this OPF model has an additional term of current margins of the line besides the traditional transmission losses and generations costs, which contributes to thermal stability margins of power systems. The model is a reformulated bus injection model with clear physical meanings. Second order cone program (SOCP) relaxations for the proposed OPF are made, followed by the over-satisfaction condition guaranteeing the exactness of the SOCP relaxations. A simple 6-node case and several IEEE benchmark systems are studied to illustrate the efficiency of the developed results.


2021 ◽  
Author(s):  
Elton A. Chagas ◽  
Anselmo B. Rodrigues ◽  
Maria G. Silva

The main aim of this paper is to propose a robust probabilistic optimal power flow model to determine the droop control parameters for the Distributed Generators (DG) of a islanded microgrid. The term robust is related to the droop control parameters being immune to uncertainties associated with: load forecast errors, DG outages and variability of power output in renewable DG. This optimization problem is solved by an improved gravitational search algorithm (GSA). The test results demonstrated that the proposed method can achieve significant reductions in the load curtailments due to frequency and voltage violations. In addition, a comparison between GSA and the Particle Swarm Optimization (PSO) demonstrated that GSA is more suitable for evaluating the droop control parameters than PSO in relation to the computational cost and the optimal quality of the solution.


Sign in / Sign up

Export Citation Format

Share Document