Outward electron transfer bySaccharomyces cerevisiaemonitored with a bi-cathodic microbial fuel cell-type activity sensor

Yeast ◽  
2009 ◽  
pp. n/a-n/a ◽  
Author(s):  
Raphaël Ducommun ◽  
Marie-France Favre ◽  
Delphine Carrard ◽  
Fabian Fischer
2013 ◽  
Vol 148 ◽  
pp. 567-573 ◽  
Author(s):  
Marc Sugnaux ◽  
Sophie Mermoud ◽  
Ana Ferreira da Costa ◽  
Manuel Happe ◽  
Fabian Fischer

2007 ◽  
Vol 73 (16) ◽  
pp. 5347-5353 ◽  
Author(s):  
Hanno Richter ◽  
Martin Lanthier ◽  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACT The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.


2009 ◽  
Vol 30 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Mia Kim ◽  
Moon Sik Hyun ◽  
Geoffrey M. Gadd ◽  
Gwang Tae Kim ◽  
Sang‐Joon Lee ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (73) ◽  
pp. 68827-68834 ◽  
Author(s):  
Praveena Gangadharan ◽  
Indumathi M. Nambi ◽  
Jaganathan Senthilnathan ◽  
Pavithra V. M.

In the present study, a low molecular heterocyclic aminopyrazine (Apy)–reduced graphene oxide (r-GO) hybrid coated carbon cloth (r-GO–Apy–CC) was employed as an active and stable bio-electro catalyst in a microbial fuel cell (MFC).


2013 ◽  
Vol 68 (9) ◽  
pp. 1914-1919 ◽  
Author(s):  
Gai-Xiu Yang ◽  
Yong-Ming Sun ◽  
Xiao-Ying Kong ◽  
Feng Zhen ◽  
Ying Li ◽  
...  

Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to degrade organic matter or sludge present in wastewater (WW), and thereby generate electricity. We developed a simple, low-cost single-chamber microbial fuel cell (SCMFC)-type biochemical oxygen demand (BOD) sensor using carbon felt (anode) and activated sludge, and demonstrated its feasibility in the construction of a real-time BOD measurement system. Further, the effects of anodic pH and organic concentration on SCMFC performance were examined, and the correlation between BOD concentration and its response time was analyzed. Our results demonstrated that the SCMFC exhibited a stable voltage after 132 min following the addition of synthetic WW (BOD concentration: 200 mg/L). Notably, the response signal increased with an increase in BOD concentration (range: 5–200 mg/L) and was found to be directly proportional to the substrate concentration. However, at higher BOD concentrations (>120 mg/L) the response signal remained unaltered. Furthermore, we optimized the SCMFC using synthetic WW, and tested it with real WW. Upon feeding real WW, the BOD values exhibited a standard deviation from 2.08 to 8.3% when compared to the standard BOD5 method, thus demonstrating the practical applicability of the developed system to real treatment effluents.


2017 ◽  
Vol 75 (2) ◽  
pp. 669-684 ◽  
Author(s):  
Mekhaissia Ouis ◽  
Mostefa Kameche ◽  
Christophe Innocent ◽  
Mustapha Charef ◽  
Hakima Kebaili

Sign in / Sign up

Export Citation Format

Share Document