Biosynthesis and assembly of alcohol oxidase, a peroxisomal matrix protein in methylotrophic yeasts: A review

Yeast ◽  
1991 ◽  
Vol 7 (3) ◽  
pp. 195-209 ◽  
Author(s):  
Ida J. Van Der Klei ◽  
Wim Harder ◽  
Marten Veenhuis
1985 ◽  
Vol 5 (5) ◽  
pp. 1111-1121
Author(s):  
S B Ellis ◽  
P F Brust ◽  
P J Koutz ◽  
A F Waters ◽  
M M Harpold ◽  
...  

The oxidation of methanol follows a well-defined pathway and is similar for several methylotrophic yeasts. The use of methanol as the sole carbon source for the growth of Pichia pastoris stimulates the expression of a family of genes. Three methanol-responsive genes have been isolated; cDNA copies have been made from mRNAs of these genes, and the protein products from in vitro translations have been examined. The identification of alcohol oxidase as one of the cloned, methanol-regulated genes has been made by enzymatic, immunological, and sequence analyses. Methanol-regulated expression of each of these three isolated genes can be demonstrated to occur at the level of transcription. Finally, DNA subfragments of two of the methanol-responsive genomic clones from P. pastoris have been isolated and tentatively identified as containing the control regions involved in methanol regulation.


Yeast ◽  
2007 ◽  
Vol 24 (6) ◽  
pp. 523-532 ◽  
Author(s):  
Takashi Ito ◽  
Shuki Fujimura ◽  
Masataka Uchino ◽  
Naoto Tanaka ◽  
Yoshimi Matsufuji ◽  
...  

1994 ◽  
Vol 5 (8) ◽  
pp. 829-837 ◽  
Author(s):  
M E Evers ◽  
V I Titorenko ◽  
I J van der Klei ◽  
W Harder ◽  
M Veenhuis

The peroxisomal flavoprotein alcohol oxidase (AO) is an octamer (600 kDa) consisting of eight identical subunits, each of which contains one flavin adenine dinucleotide molecule as a cofactor. Studies on a riboflavin (Rf) auxotrophic mutant of the yeast Hansenula polymorpha revealed that limitation of the cofactor led to drastic effects on AO import and assembly as well as peroxisome proliferation. Compared to wild-type control cells Rf-limitation led to 1) reduced levels of AO protein, 2) reduced levels of correctly assembled and activated AO inside peroxisomes, 3) a partial inhibition of peroxisomal protein import, leading to the accumulation of precursors of matrix proteins in the cytosol, and 4) a significant increase in peroxisome number. We argue that the inhibition of import may result from the saturation of a peroxisomal molecular chaperone under conditions that normal assembly of a major matrix protein inside the target organelle is prevented.


2001 ◽  
Vol 114 (15) ◽  
pp. 2863-2868
Author(s):  
Mary Q. Stewart ◽  
Renee D. Esposito ◽  
Jehangir Gowani ◽  
Joel M. Goodman

Alcohol oxidase (AO) and dihydroxyacetone synthase (DHAS) constitute the bulk of matrix proteins in methylotrophic yeasts, model organisms for the study of peroxisomal assembly. Both are homooligomers; AO is a flavin-containing octamer, whereas DHAS is a thiamine pyrophosphate-containing dimer. Experiments in recent years have demonstrated that assembly of peroxisomal oligomers can occur before import; indeed the absence of chaperones within the peroxisomal matrix calls into question the ability of this compartment to assemble proteins at all. We have taken a direct pulse-chase approach to monitor import and assembly of the two major proteins of peroxisomes in Candida boidinii. Oligomers of AO are not observed in the cytosol, consistent with the proteins inability to undergo piggyback import. Indeed, oligomerization of AO can be followed within the peroxisomal matrix, directly demonstrating the capacity of this compartment for protein assembly. By contrast, DHAS quickly dimerizes in the cytosol before import. Binding and import was slowed at 15°C; the effect on AO was more dramatic. In conclusion, our data indicate that peroxisomes assemble AO in the matrix, while DHAS undergoes dimerization prior to import.


1997 ◽  
Vol 139 (6) ◽  
pp. 1419-1431 ◽  
Author(s):  
Hans R. Waterham ◽  
Kimberly A. Russell ◽  
Yne de Vries ◽  
James M. Cregg

Alcohol oxidase (AOX), the first enzyme in the yeast methanol utilization pathway is a homooctameric peroxisomal matrix protein. In peroxisome biogenesis-defective (pex) mutants of the yeast Pichia pastoris, AOX fails to assemble into active octamers and instead forms inactive cytoplasmic aggregates. The apparent inability of AOX to assemble in the cytoplasm contrasts with other peroxisomal proteins that are able to oligomerize before import. To further investigate the import of AOX, we first identified its peroxisomal targeting signal (PTS). We found that sequences essential for targeting AOX are primarily located within the four COOH-terminal amino acids of the protein leucine-alanine-arginine-phenylalanine COOH (LARF). To examine whether AOX can oligomerize before import, we coexpressed AOX without its PTS along with wild-type AOX and determined whether the mutant AOX could be coimported into peroxisomes. To identify the mutant form of AOX, the COOH-terminal LARF sequence of the protein was replaced with a hemagglutinin epitope tag (AOX–HA). Coexpression of AOX–HA with wild-type AOX (AOX-WT) did not result in an increase in the proportion of AOX–HA present in octameric active AOX, suggesting that newly synthesized AOX–HA cannot oligomerize with AOX-WT in the cytoplasm. Thus, AOX cannot initiate oligomerization in the cytoplasm, but must first be targeted to the organelle before assembly begins.


Sign in / Sign up

Export Citation Format

Share Document