matrix protein
Recently Published Documents





Anamar Miranda ◽  
Damien Seyer ◽  
Carla Palomino-Durand ◽  
Houda Morakchi-Goudjil ◽  
Mathilde Massonie ◽  

The success of stable and long-term implant integration implies the promotion, control, and respect of the cell microenvironment at the site of implantation. The key is to enhance the implant–host tissue cross talk by developing interfacial strategies that guarantee an optimal and stable seal of soft tissue onto the implant, while preventing potential early and late infection. Indeed, implant rejection is often jeopardized by lack of stable tissue surrounding the biomaterial combined with infections which reduce the lifespan and increase the failure rate of implants and morbidity and account for high medical costs. Thin films formed by the layer-by-layer (LbL) assembly of oppositely charged polyelectrolytes are particularly versatile and attractive for applications involving cell–material contact. With the combination of the extracellular matrix protein fibronectin (Fn, purified from human plasma) and poly-L-lysine (PLL, exhibiting specific chain lengths), we proposed proactive and biomimetic coatings able to guarantee enhanced cell attachment and exhibiting antimicrobial properties. Fn, able to create a biomimetic interface that could enhance cell attachment and promote extracellular cell matrix remodeling, is incorporated as the anionic polymer during film construction by the LbL technic whereas PLL is used as the cationic polymer for its capacity to confer remarkable antibacterial properties.

2022 ◽  
Vol 12 ◽  
Akitsu Masuda ◽  
Jae Man Lee ◽  
Takeshi Miyata ◽  
Hiroaki Mon ◽  
Keita Sato ◽  

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a spread of coronavirus disease 2019 (COVID-19) globally. In order to end the COVID-19 pandemic, an effective vaccine against SARS-CoV-2 must be produced at low cost and disseminated worldwide. The spike (S) protein of coronaviruses plays a pivotal role in the infection to host cells. Therefore, targeting the S protein is one of the most rational approaches in developing vaccines and therapeutic agents. In this study, we optimized the expression of secreted trimerized S protein of SARS-CoV-2 using a silkworm-baculovirus expression vector system and evaluated its immunogenicity in mice. The results showed that the S protein forming the trimeric structure was the most stable when the chicken cartilage matrix protein was used as the trimeric motif and could be purified in large amounts from the serum of silkworm larvae. The purified S protein efficiently induced antigen-specific antibodies in mouse serum without adjuvant, but its ability to induce neutralizing antibodies was low. After examining several adjuvants, the use of Alum adjuvant was the most effective in inducing strong neutralizing antibody induction. We also examined the adjuvant effect of paramylon from Euglena gracilis when administered with the S protein. Our results highlight the effectiveness and suitable construct design of the S protein produced in silkworms for the subunit vaccine development against SARS-CoV-2.

2022 ◽  
Vol 11 ◽  
Zi-Xuan He ◽  
Sheng-Bing Zhao ◽  
Xue Fang ◽  
Ji-Fu E ◽  
Hong-Yu Fu ◽  

BackgroundColon cancer is one of the most frequent malignancies and causes high mortality worldwide. Exploring the tumor-immune interactions in the tumor microenvironment and identifying new prognostic and therapeutic biomarkers will assist in decoding the novel mechanism of tumor immunotherapy. BGN is a typical extracellular matrix protein that was previously validated as a signaling molecule regulating multiple processes of tumorigenesis. However, its role in tumor immunity requires further investigation.MethodsThe differentially expressed genes in three GEO datasets were analyzed, and BGN was identified as the target gene by intersection analysis of PPIs. The relevance between clinical outcomes and BGN expression levels was evaluated using data from the GEO database, TCGA and tissue microarray of colon cancer samples. Univariable and multivariable Cox regression models were conducted for identifying the risk factors correlated with clinical prognosis of colon cancer patients. Next, the association between BGN expression levels and the infiltration of immune cells as well as the process of the immune response was analyzed. Finally, we predicted the immunotherapeutic response rates in the subgroups of low and high BGN expression by TIS score, ImmuCellAI and TIDE algorithms.ResultsBGN expression demonstrated a statistically significant upregulation in colon cancer tissues than in normal tissues. Elevated BGN was associated with shorter overall survival as well as unfavorable clinicopathological features, including tumor size, serosa invasion and length of hospitalization. Mechanistically, pathway enrichment and functional analysis demonstrated that BGN was positively correlated with immune and stromal scores in the TME and primarily involved in the regulation of immune response. Further investigation revealed that BGN was strongly expressed in the immunosuppressive phenotype and tightly associated with the infiltration of multiple immune cells in colon cancer, especially M2 macrophages and induced Tregs. Finally, we demonstrated that high BGN expression presented a better immunotherapeutic response in colon cancer patients.ConclusionBGN is an encouraging predictor of diagnosis, prognosis and immunotherapeutic response in patients with colon cancer. Assessment of BGN expression represents a novel approach with great promise for identifying patients who may potentially benefit from immunotherapy.

2022 ◽  
Vol 21 (1) ◽  
Zhixiong Chen ◽  
Xi Chu ◽  
Jinghong Xu

Abstract Background The role of epithelial-mesenchymal transition (EMT) in the pathogenesis of keloids is currently raising increasing attention. Long noncoding RNAs (lncRNAs) govern a variety of biological processes, such as EMT, and their dysregulation is involved in many diseases including keloid disease. The aim of this study was to identify differentially expressed EMT-related lncRNAs in keloid tissues versus normal tissues and to interpret their functions. Results Eleven lncRNAs and 16 mRNAs associated with EMT were identified to have differential expression between keloid and normal skin tissues (fold change > 1.5, P < 0.05). Gene Ontology (GO) analysis showed that these differentially expressed mRNAs functioned in the extracellular matrix, protein binding, the positive regulation of cellular processes, the Set1C/COMPASS complex and histone acetyltransferase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that these mRNAs are involved in pathways in cancer. The lncRNA, XLOC_000587 may promote cell proliferation and migration by enhancing the expression of ENAH, while AF268386 may facilitate the invasive growth of keloids by upregulating DDR2. Conclusions We characterized the differential expression profiles of EMT-related lncRNAs and mRNAs in keloids, which may contribute to preventing the occurrence and development of keloids by targeting the corresponding signaling pathways. These lncRNAs and mRNAs may provide biomarkers for keloid diagnosis and serve as potential targets for the treatment of this disease.

2022 ◽  
Vol 13 (1) ◽  
Nicole Kleiber ◽  
Nicolas Lemus-Diaz ◽  
Carina Stiller ◽  
Marleen Heinrichs ◽  
Mandy Mong-Quyen Mai ◽  

AbstractModified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m3C32 in the human mitochondrial (mt-)tRNAThr and mt-tRNASer(UCN). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U34G35 and t6A37/(ms2)i6A37, present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C32. Several lines of evidence demonstrate the influence of U34, G35, and the m3C32 and t6A37/(ms2)i6A37 modifications in mt-tRNAThr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNAThr/Ser(UCN) lacking METTL8-mediated m3C32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m3C32 within mt-tRNAs.

2022 ◽  
Pegah Sarraf ◽  
Razieh Sadat Moayeri ◽  
Noushin Shokouhinejad ◽  
Mehrfam Khoshkhounejad ◽  
Roya Karimi ◽  

Abstract Background: PRF as one of the favorable scaffolds in Regenerative Endodontic Treatment (RET), has several limitations such as the need for blood sampling and special equipment. High available commercial scaffolds such as fibrin are able to meet all the necessary requirements of dentin tissue engineering. The present study was designed to evaluate the effect of PRF and fibrin gel, with and without the presence of EDTA-treated radicular dentin segments on SCAP viability, proliferation, migration, and differentiation.Methods: Radicular dentin were prepared from extracted teeth and treated by EDTA 17% .The samples were divided into 6 groups: Dentin/PRF/Cell, Dentin/Fibrin/Cell, Dentin/Cell, PRF/Cell, Fibrin/Cell and Cell (Control). SCAP viability was assessed using MTT assay. Gene expression levels of odontogenic markers [Dentin sialophosphoprotein (DSPP), Dentin matrix protein 1(DMP1), Collagen type I Alpha 1(COL 1A1) and Alkaline phosphatase (ALP) were assessed using qrt-PCR. Cell migration were also evaluated by means of scratch test. Results: The results of MTT assay at showed that the viability of SCAP significantly increased after 7 days for both groups containing fibrin (P <0.05). The viability of SCAP seeded on Dentin/PRF and PRF significantly decreased after 7 days (P <0.001). The odontogenic markers were significantly expressed for both scaffolds in the presence of dentin segment (p<0.05). Significant decrease in scratch area was seen in Fibrin/Dentin group (p < 0.001)Conclusions:Fibrin beside EDTA-treated dentin showed great ability in survival, proliferation, differentiation, and migration of SCAP rather than PRF.

2022 ◽  
Vol 23 (2) ◽  
pp. 604
Cristiana Tanase ◽  
Ana Maria Enciu ◽  
Elena Codrici ◽  
Ionela Daniela Popescu ◽  
Maria Dudau ◽  

Glioblastoma (GBM) is one of the most aggressive tumors of the central nervous system, characterized by a wide range of inter- and intratumor heterogeneity. Accumulation of fatty acids (FA) metabolites was associated with a low survival rate in high-grade glioma patients. The diversity of brain lipids, especially polyunsaturated fatty acids (PUFAs), is greater than in all other organs and several classes of proteins, such as FA transport proteins (FATPs), and FA translocases are considered principal candidates for PUFAs transport through BBB and delivery of PUFAs to brain cells. Among these, the CD36 FA translocase promotes long-chain FA uptake as well as oxidated lipoproteins. Moreover, CD36 binds and recognizes thrombospondin-1 (TSP-1), an extracellular matrix protein that was shown to play a multifaceted role in cancer as part of the tumor microenvironment. Effects on tumor cells are mediated by TSP-1 through the interaction with CD36 as well as CD47, a member of the immunoglobulin superfamily. TSP-1/CD47 interactions have an important role in the modulation of glioma cell invasion and angiogenesis in GBM. Separately, FA, the two membrane receptors CD36, CD47, and their joint ligand TSP-1 all play a part in GBM pathogenesis. The last research has put in light their interconnection/interrelationship in order to exert a cumulative effect in the modulation of the GBM molecular network.

Sign in / Sign up

Export Citation Format

Share Document