scholarly journals Natural Variational Problems in the Grassmann Manifold of a C*-Algebra with Trace

2000 ◽  
Vol 154 (1) ◽  
pp. 196-228 ◽  
Author(s):  
Carlos E. Durán ◽  
Luis E. Mata-Lorenzo ◽  
Lázaro Recht
Filomat ◽  
2017 ◽  
Vol 31 (19) ◽  
pp. 6005-6013
Author(s):  
Mahdi Iranmanesh ◽  
Fatemeh Soleimany

In this paper we use the concept of numerical range to characterize best approximation points in closed convex subsets of B(H): Finally by using this method we give also a useful characterization of best approximation in closed convex subsets of a C*-algebra A.


Universe ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 71 ◽  
Author(s):  
Valerio Faraoni

Several classic one-dimensional problems of variational calculus originating in non-relativistic particle mechanics have solutions that are analogues of spatially homogeneous and isotropic universes. They are ruled by an equation which is formally a Friedmann equation for a suitable cosmic fluid. These problems are revisited and their cosmic analogues are pointed out. Some correspond to the main solutions of cosmology, while others are analogous to exotic cosmologies with phantom fluids and finite future singularities.


2019 ◽  
Vol 35 (7) ◽  
pp. 2187-2219
Author(s):  
Esteban Andruchow ◽  
Gustavo Corach ◽  
Lázaro Recht
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1665
Author(s):  
Fátima Cruz ◽  
Ricardo Almeida ◽  
Natália Martins

In this work, we study variational problems with time delay and higher-order distributed-order fractional derivatives dealing with a new fractional operator. This fractional derivative combines two known operators: distributed-order derivatives and derivatives with respect to another function. The main results of this paper are necessary and sufficient optimality conditions for different types of variational problems. Since we are dealing with generalized fractional derivatives, from this work, some well-known results can be obtained as particular cases.


1997 ◽  
Vol 12 (30) ◽  
pp. 5411-5529 ◽  
Author(s):  
Fyodor V. Tkachov

Ambiguities of jet algorithms are reinterpreted as instability wrt small variations of input. Optimal stability occurs for observables possessing property of calorimetric continuity (C-continuity) predetermined by kinematical structure of calorimetric detectors. The so-called C-correlators form a basic class of such observables and fit naturally into QFT framework, allowing systematic theoretical studies. A few rules generate other C-continuous observables. The resulting C-algebra correctly quantifies any feature of multijet structure such as the "number of jets" and mass spectra of "multijet substates." The new observables are physically equivalent to traditional ones but can be computed from final states bypassing jet algorithms which reemerge as a tool of approximate computation of C-observables from data with all ambiguities under analytical control and an optimal recombination criterion minimizing approximation errors.


Sign in / Sign up

Export Citation Format

Share Document