scholarly journals There Exists a Problem Whose Computational Complexity Is Any Given Function of the Information Complexity

1994 ◽  
Vol 10 (4) ◽  
pp. 445-450
Author(s):  
Ming Chu
Author(s):  
Alexandre L. S. Filipowicz ◽  
Jonathan Levine ◽  
Eugenio Piasini ◽  
Gaia Tavoni ◽  
Joseph W. Kable ◽  
...  

AbstractDifferent learning strategies are thought to fall along a continuum that ranges from simple, inflexible, and fast “model-free” strategies, to more complex, flexible, and deliberative “model-based strategies”. Here we show that, contrary to this proposal, strategies at both ends of this continuum can be equally flexible, effective, and time-intensive. We analyzed behavior of adult human subjects performing a canonical learning task used to distinguish between model-free and model-based strategies. Subjects using either strategy showed similarly high information complexity, a measure of strategic flexibility, and comparable accuracy and response times. This similarity was apparent despite the generally higher computational complexity of model-based algorithms and fundamental differences in how each strategy learned: model-free learning was driven primarily by observed past responses, whereas model-based learning was driven primarily by inferences about latent task features. Thus, model-free and model-based learning differ in the information they use to learn but can support comparably flexible behavior.Statement of RelevanceThe distinction between model-free and model-based learning is an influential framework that has been used extensively to understand individual- and task-dependent differences in learning by both healthy and clinical populations. A common interpretation of this distinction that model-based strategies are more complex and therefore more flexible than model-free strategies. However, this interpretation conflates computational complexity, which relates to processing resources and generally higher for model-based algorithms, with information complexity, which reflects flexibility but has rarely been measured. Here we use a metric of information complexity to demonstrate that, contrary to this interpretation, model-free and model-based strategies can be equally flexible, effective, and time-intensive and are better distinguished by the nature of the information from which they learn. Our results counter common interpretations of model-free versus model-based learning and demonstrate the general usefulness of information complexity for assessing different forms of strategic flexibility.


Author(s):  
Nico Potyka

Bipolar abstract argumentation frameworks allow modeling decision problems by defining pro and contra arguments and their relationships. In some popular bipolar frameworks, there is an inherent tendency to favor either attack or support relationships. However, for some applications, it seems sensible to treat attack and support equally. Roughly speaking, turning an attack edge into a support edge, should just invert its meaning. We look at a recently introduced bipolar argumentation semantics and two novel alternatives and discuss their semantical and computational properties. Interestingly, the two novel semantics correspond to stable semantics if no support relations are present and maintain the computational complexity of stable semantics in general bipolar frameworks.


Author(s):  
Nguyen N. Tran ◽  
Ha X. Nguyen

A capacity analysis for generally correlated wireless multi-hop multi-input multi-output (MIMO) channels is presented in this paper. The channel at each hop is spatially correlated, the source symbols are mutually correlated, and the additive Gaussian noises are colored. First, by invoking Karush-Kuhn-Tucker condition for the optimality of convex programming, we derive the optimal source symbol covariance for the maximum mutual information between the channel input and the channel output when having the full knowledge of channel at the transmitter. Secondly, we formulate the average mutual information maximization problem when having only the channel statistics at the transmitter. Since this problem is almost impossible to be solved analytically, the numerical interior-point-method is employed to obtain the optimal solution. Furthermore, to reduce the computational complexity, an asymptotic closed-form solution is derived by maximizing an upper bound of the objective function. Simulation results show that the average mutual information obtained by the asymptotic design is very closed to that obtained by the optimal design, while saving a huge computational complexity.


2009 ◽  
Vol 20 (9) ◽  
pp. 2344-2351 ◽  
Author(s):  
He JIANG ◽  
Yan HU ◽  
Qiang LI ◽  
Hong YU

Sign in / Sign up

Export Citation Format

Share Document