channel output
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
B. S. Yesmagambetov ◽  

In telemetry systems, using irreversible data compression, several message generation methods can be used. In the channel output packet, there may be several code words defining its composition. They can be combined and arranged in a strictly defined sequence. Such a data packet is a constant or variable length code combination, wherein the constant length of the packet is generated in the case of a predetermined and unchanged amount of information at the data output interval, and the variable is otherwise generated. The channel data packet can then be treated as a single whole: provide it with address information about the source of the message, information about the time interval at which the packet was formed, to bind significant samples to time, additional check symbols and codes to increase interference immunity of transmission, or to form a packet structure in the same way. Address, time and synchronization information in the literature is called overhead. The need to transmit overhead information reduces the efficiency of the transceiver systems. Therefore, the problem of reducing the volume of service information is extremely urgent.


2021 ◽  
Vol 2 (6) ◽  
pp. 33-41
Author(s):  
Anahid Robert Safavi ◽  
Alberto G. Perotti ◽  
Branislav M. Popovic ◽  
Mahdi Boloursaz Mashhadi ◽  
Deniz G�nd�z

A new Deep Neural Network (DNN)-based error correction encoder architecture for channels with feedback, called Deep Extended Feedback (DEF), is presented in this paper. The encoder in the DEF architecture transmits an information message followed by a sequence of parity symbols which are generated based on the message as well as the observations of the past forward channel outputs sent to the transmitter through a feedback channel. DEF codes generalize Deepcode in several ways: parity symbols are generated based on forward channel output observations over longer time intervals in order to provide better error correction capability; and high-order modulation formats are deployed in the encoder so as to achieve increased spectral efficiency. Performance evaluations show that DEF codes have better performance compared to other DNN-based codes for channels with feedback.


2021 ◽  
Vol 11 (16) ◽  
pp. 7491
Author(s):  
Hyosung Nam ◽  
Taewan Kim ◽  
Taejoo Sim ◽  
Sooji Bae ◽  
Junghyun Kim

This paper presents a 2.4 GHz 20 W 8-channel radio frequency (RF) source module with improved channel output balance. The proposed RF source module is composed of an RF source generation/DC control part, a power amplification part, and a power dividing part. A 2-stage power amplifier (PA) is combined with gallium nitride high-electron-mobility transistors, including a 25 W transistor and 2-way combined 120 W transistors as the drive and main PA, respectively. In addition, a structure was applied to improve the channel output balance compared to that of the previous module, and the differences of the phase and magnitude of the output power between channels are alleviated within 0.35° and 0.18 dB, respectively. A water jacket was implemented under the drive and main PAs for liquid cooling; however, unlike in the previous work, it was designed by optimizing the size of the water jacket and reducing unnecessary materials using a brazing process. The output power at each channel was 43 dBm, and the drain efficiency was more than 50% at 2.4 GHz. The total module size was 244 mm × 247.4 mm × 30 mm, and its volume was reduced by approximately 58.4% compared to that of the previous module.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1434
Author(s):  
Jan Lewandowsky ◽  
Sumedh Jitendra Dongare ◽  
Rocío Martín Lima ◽  
Marc Adrat ◽  
Matthias Schrammen ◽  
...  

The preservation of relevant mutual information under compression is the fundamental challenge of the information bottleneck method. It has many applications in machine learning and in communications. The recent literature describes successful applications of this concept in quantized detection and channel decoding schemes. The focal idea is to build receiver algorithms intended to preserve the maximum possible amount of relevant information, despite very coarse quantization. The existent literature shows that the resulting quantized receiver algorithms can achieve performance very close to that of conventional high-precision systems. Moreover, all demanding signal processing operations get replaced with lookup operations in the considered system design. In this paper, we develop the idea of maximizing the preserved relevant information in communication receivers further by considering parametrized systems. Such systems can help overcome the need of lookup tables in cases where their huge sizes make them impractical. We propose to apply genetic algorithms which are inspired from the natural evolution of the species for the problem of parameter optimization. We exemplarily investigate receiver-sided channel output quantization and demodulation to illustrate the notable performance and the flexibility of the proposed concept.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Qiao ◽  
Mingfu Wang ◽  
Zheng Jin

AbstractIn order to improve the image quality, it is imperative to conduct the non-uniformity correction of EMCCD, for which the measurement accuracy of the internal electron multiplication gain of each channel is a prerequisite within multi-channel output EMCCD. It is known that the smaller the image standard deviation of each channel, the better the image uniformity, and the closer the calculated multiplier gain is to the real value. In order to minimize the influence of non-uniformity of background between pixels and light response existing in traditional measurement, a comprehensively modified EMCCD multiplication gain measurement is proposed after the working principle of EMCCD is described. The output images of the camera working in the normal CCD mode and EMCCD mode are corrected comprehensively through this method. The experimental results show that after the comprehensive correction, the standard deviation of the output image of each channel within the camera decreases to about one third of the original when the camera works in the normal CCD mode, while it decreases to about one fifth of the original when the camera works in the EMCCD mode, the signal stability is significantly improved, and the measured multiplier gain of each channel is closer to the true value of the detector, which proves the effectiveness of the proposed method.


2021 ◽  
Author(s):  
Thomas Braatz ◽  
Sebastian Starosielec ◽  
Ekatarina Zapolnova ◽  
Torsten Golz ◽  
Ivanka Grguraš ◽  
...  
Keyword(s):  

Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 55
Author(s):  
Ivan Derkach ◽  
Vladyslav C. Usenko

We address the applicability of quantum key distribution with continuous-variable coherent and squeezed states over long-distance satellite-based links, considering low Earth orbits and taking into account strong varying channel attenuation, atmospheric turbulence and finite data ensemble size effects. We obtain tight security bounds on the untrusted excess noise on the channel output, which suggest that substantial efforts aimed at setup stabilization and reduction of noise and loss are required, or the protocols can be realistically implemented over satellite links once either individual or passive collective attacks are assumed. Furthermore, splitting the satellite pass into discrete segments and extracting the key from each rather than from the overall single pass allows one to effectively improve robustness against the untrusted channel noise and establish a secure key under active collective attacks. We show that feasible amounts of optimized signal squeezing can substantially improve the applicability of the protocols allowing for lower system clock rates and aperture sizes and resulting in higher robustness against channel attenuation and noise compared to the coherent-state protocol.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 846
Author(s):  
Ligong Wang

This paper studies the discrete-time Poisson channel and the noiseless binary channel where, after recording a 1, the channel output is stuck at 0 for a certain period; this period is called the “dead time.” The communication capacities of these channels are analyzed, with main focus on the regime where the allowed average input power is close to zero, either because the bandwidth is large, or because the available continuous-time input power is low.


Sign in / Sign up

Export Citation Format

Share Document