compact finite difference scheme
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 35)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Mahboubeh Molavi-Arabshahi ◽  
Zahra Saeidi

In this paper, the compact finite difference scheme as unconditionally stable method is applied to some type of fractional derivative equation. We intend to solve with this scheme two kinds of a fractional derivative, first a fractional order system of Granwald-Letnikov type 1 for influenza and second fractional reaction sub diffusion equation. Also, we analyzed the stability of equilibrium points of this system. The convergence of the compact finite difference scheme in norm 2 are proved. Finally, various cases are used to test the numerical method. In comparison to other existing numerical methods, our results show that the scheme yields an accurate solution that is quick to compute.


Author(s):  
Shufang Hu ◽  
Wenlin Qiu ◽  
Hongbin Chen

Abstract A predictor–corrector compact finite difference scheme is proposed for a nonlinear partial integro-differential equation. In our method, the time direction is approximated by backward Euler scheme and the Riemann–Liouville (R–L) fractional integral term is treated by means of first order convolution quadrature suggested by Lubich. Meanwhile, a two-step predictor–corrector (P–C) algorithm called MacCormack method is used. A fully discrete scheme is constructed with space discretization by compact finite difference method. Numerical experiment presents the scheme is in good agreement with the theoretical analysis.


2020 ◽  
Vol 36 (5) ◽  
pp. 665-673 ◽  
Author(s):  
Qian Li ◽  
Wei Hua Cai ◽  
Bing Xi Li ◽  
Ching-Yao Chen

ABSTRACTIn the present study, we use direct numerical simulation to investigate the density-driven convection in a two-dimensional anisotropic heterogeneous porous media associated with significant laminated formation. At first, the heterogeneous porous media are randomly generated to represent laminated structure, in which the horizontal correlation length of permeability field is much longer than the vertical counterpart. Then, a highly accurate pseudo-spectral method and compact finite difference scheme with higher order of accuracy are employed to numerically reproduce the convection flow in the laminated porous media. The results show that the laminated structures restrict interactions among the downward plumes of heavier fluid. The plumes tend to descend more straightly in a laminated porous medium associated with a slower growth rate. As a result, the laminated distribution of permeability is considered having an inhibiting effect on the convection flow.


Sign in / Sign up

Export Citation Format

Share Document