Numerical Modeling of Magnetohydrodynamic Convection in a Rapidly Rotating Spherical Shell: Weak and Strong Field Dynamo Action

1999 ◽  
Vol 153 (1) ◽  
pp. 51-81 ◽  
Author(s):  
Weijia Kuang ◽  
Jeremy Bloxham
Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 811
Author(s):  
John V. Shebalin

Solar magnetism is believed to originate through dynamo action in the tachocline. Statistical mechanics, in turn, tells us that dynamo action is an inherent property of magnetohydrodynamic (MHD) turbulence, depending essentially on magnetic helicity. Here, we model the tachocline as a rotating, thin spherical shell containing MHD turbulence. Using this model, we find an expression for the entropy and from this develop the thermodynamics of MHD turbulence. This allows us to introduce the macroscopic parameters that affect magnetic self-organization and dynamo action, parameters that include magnetic helicity, as well as tachocline thickness and turbulent energy.


2019 ◽  
Vol 879 ◽  
pp. 793-807
Author(s):  
David W. Hughes ◽  
Fausto Cattaneo

We study dynamo action in rotating, plane layer Boussinesq convection in the absence of inertia. This allows a decomposition of the velocity into a thermal part driven by buoyancy, and a magnetic part driven by the Lorentz force. We have identified three families of solutions, defined in terms of what is the dominant contribution to the velocity. In weak field dynamos the dominant contribution is the thermal component, in super strong field dynamos the dominant contribution is magnetic and in strong field dynamos the two components are comparable. For each of these solutions we investigate the force balance in the momentum equation to determine the relative importance of the viscous, buoyancy, Coriolis and magnetic forces. We do this by extracting the solenoidal part of the individual terms in the momentum equation, thereby removing their pressure contributions. This is numerically preferable to the more common practice of taking the curl of the momentum equation, which introduces an extra derivative. We find that, irrespective of the type of dynamo solution, the dynamics is controlled by the horizontal forces (in projection). Furthermore, in the progression from weak to strong to super strong dynamos, we find that the viscous forces in the thermal equation become negligible, thereby leading to a balance between buoyancy and Coriolis forces. On the other hand, no corresponding trend is observed in the magnetic part of the momentum equation: the viscous stresses always remain significant. This can be attributed to the different degrees of smoothness of the Coriolis and Lorentz forces, the latter having contributions from strong, filamentary structures. We discuss how our findings relate to dynamo solutions in which viscosity plays no role whatsoever – so-called Taylor states.


2005 ◽  
Vol 17 (7) ◽  
pp. 076601 ◽  
Author(s):  
Futoshi Takahashi ◽  
Masaki Matsushima

1995 ◽  
Vol 74 (16) ◽  
pp. 3145-3148 ◽  
Author(s):  
R. Hollerbach ◽  
D. J. Galloway ◽  
M. R. E. Proctor

2005 ◽  
Vol 236 (1-2) ◽  
pp. 542-557 ◽  
Author(s):  
M.H. Heimpel ◽  
J.M. Aurnou ◽  
F.M. Al-Shamali ◽  
N. Gomez Perez

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1881
Author(s):  
Krzysztof Andrzej Mizerski

The natural simplifying assumptions often put forward in the theoretical investigations of the magnetohydrodynamic turbulence are that the turbulent flow is statistically isotropic, homogeneous and stationary. Of course, the natural turbulence in the planetary interiors, such as the liquid core of the Earth is neither, which has important consequences for the dynamics of the planetary magnetic fields generated via the hydromagnetic dynamo mechanism operating in the interiors of the planets. Here we concentrate on the relaxation of the assumption of statistical stationarity of the turbulent flow and study the effect of turbulent wave fields in the Earth’s core, which induces non-stationarity, on the turbulent resistivity in the non-reflectionally symmetric flow and the geodynamo effect. It is shown that the electromotive force, including the so-called α-effect and the turbulent magnetic diffusivity η¯, induced by non-stationary turbulence, evolves slowly in time. However, the turbulent α¯ coefficient, responsible for the dynamo action and η¯ evolve differently in time, thus creating periods of enhanced and suppressed turbulent diffusion and dynamo action somewhat independently. In particular, periods of enhanced α¯ may coincide with periods of suppressed diffusion, leading to a stable and strong field period. On the other hand, it is shown that when enhanced diffusion occurs simultaneously with suppression of the α-effect, this leads to a sharp drop in the intensity of the large-scale field, corresponding to a geomagnetic excursion.


Author(s):  
Белогловский ◽  
Andrey Beloglovskiy ◽  
Федорова ◽  
A. Fedorova

A research of conditions of the branching of positive streamer in air in a strong electric field by the use a three-dimensional numerical model is presented. This model is based on the assumption that the development of large electron avalanches in the strong field in front of the streamer head leads to branching. Tendency for branching has been observed, if the ratio of the diameters of the streamer heads to the distance between them is not greater than 0.55. If this ratio is more than 0,55, merger of originally formed streamer heads has been observed, and then only one streamer develops in the discharge gap.


Science ◽  
2018 ◽  
Vol 362 (6410) ◽  
pp. eaat5434 ◽  
Author(s):  
Michele K. Dougherty ◽  
Hao Cao ◽  
Krishan K. Khurana ◽  
Gregory J. Hunt ◽  
Gabrielle Provan ◽  
...  

During 2017, the Cassini fluxgate magnetometer made in situ measurements of Saturn’s magnetic field at distances ~2550 ± 1290 kilometers above the 1-bar surface during 22 highly inclined Grand Finale orbits. These observations refine the extreme axisymmetry of Saturn’s internal magnetic field and show displacement of the magnetic equator northward from the planet’s physical equator. Persistent small-scale magnetic structures, corresponding to high-degree (>3) axisymmetric magnetic moments, were observed. This suggests secondary shallow dynamo action in the semiconducting region of Saturn’s interior. Some high-degree magnetic moments could arise from strong high-latitude concentrations of magnetic flux within the planet’s deep dynamo. A strong field-aligned current (FAC) system is located between Saturn and the inner edge of its D-ring, with strength comparable to the high-latitude auroral FACs.


2010 ◽  
Vol 6 (S271) ◽  
pp. 213-217 ◽  
Author(s):  
Rainer Arlt ◽  
Günther Rüdiger

AbstractCurrent-driven instabilities in stellar radiation zones, to which we refer as Tayler instabilities, can lead to complex nonlinear evolutions. It is of fundamental interest whether magnetically driven turbulence can lead to dynamo action in these radiative zones. We investigate initial-value simulations in a 3D spherical shell including differential rotation. The Tayler instability is connected with a very weak kinetic helicity, stronger current helicity, and a positive αφφ in the northern hemisphere. The amplitudes are small compared to the effect of the tangential cylinder producing an eddy with negative kinetic helicity and negative αφφ in the northern hemisphere. The αφφ from the Tayler instability reaches about 1% of the rms velocity.


Sign in / Sign up

Export Citation Format

Share Document