scholarly journals Possible Role of Non-Stationarity of Magnetohydrodynamic Turbulence in Understanding of Geomagnetic Excursions

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1881
Author(s):  
Krzysztof Andrzej Mizerski

The natural simplifying assumptions often put forward in the theoretical investigations of the magnetohydrodynamic turbulence are that the turbulent flow is statistically isotropic, homogeneous and stationary. Of course, the natural turbulence in the planetary interiors, such as the liquid core of the Earth is neither, which has important consequences for the dynamics of the planetary magnetic fields generated via the hydromagnetic dynamo mechanism operating in the interiors of the planets. Here we concentrate on the relaxation of the assumption of statistical stationarity of the turbulent flow and study the effect of turbulent wave fields in the Earth’s core, which induces non-stationarity, on the turbulent resistivity in the non-reflectionally symmetric flow and the geodynamo effect. It is shown that the electromotive force, including the so-called α-effect and the turbulent magnetic diffusivity η¯, induced by non-stationary turbulence, evolves slowly in time. However, the turbulent α¯ coefficient, responsible for the dynamo action and η¯ evolve differently in time, thus creating periods of enhanced and suppressed turbulent diffusion and dynamo action somewhat independently. In particular, periods of enhanced α¯ may coincide with periods of suppressed diffusion, leading to a stable and strong field period. On the other hand, it is shown that when enhanced diffusion occurs simultaneously with suppression of the α-effect, this leads to a sharp drop in the intensity of the large-scale field, corresponding to a geomagnetic excursion.

1970 ◽  
Vol 41 (2) ◽  
pp. 435-452 ◽  
Author(s):  
H. K. Moffatt

The effect of turbulence on a magnetic field whose length-scale L is initially large compared with the scale l of the turbulence is considered. There are no external sources for the field, and in the absence of turbulence it decays by ohmic dissipation. It is assumed that the magnetic Reynolds number Rm = u0l/λ (where u0 is the root-mean-square velocity and λ the magnetic diffusivity) is small. It is shown that to lowest order in the small quantities l/L and Rm, isotropic turbulence has no effect on the large-scale field; but that turbulence that lacks reflexional symmetry is capable of amplifying Fourier components of the field on length scales of order Rm−2l and greater. In the case of turbulence whose statistical properties are invariant under rotation of the axes of reference, but not under reflexions in a point, it is shown that the magnetic energy density of a magnetic field which is initially a homogeneous random function of position with a particularly simple spectrum ultimately increases as t−½exp (α2t/2λ3) where α(= O(u02l)) is a certain linear functional of the spectrum tensor of the turbulence. An analogous result is obtained for an initially localized field.


2019 ◽  
Vol 864 ◽  
pp. 971-994 ◽  
Author(s):  
Kannabiran Seshasayanan ◽  
Basile Gallet

We present analytical examples of fluid dynamos that saturate through the action of the Coriolis and inertial terms of the Navier–Stokes equation. The flow is driven by a body force and is subject to global rotation and uniform sweeping velocity. The model can be studied down to arbitrarily low viscosity and naturally leads to the strong-field scaling regime for the magnetic energy produced above threshold: the magnetic energy is proportional to the global rotation rate and independent of the viscosity $\unicode[STIX]{x1D708}$. Depending on the relative orientations of global rotation and large-scale sweeping, the dynamo bifurcation is either supercritical or subcritical. In the supercritical case, the magnetic energy follows the scaling law for supercritical strong-field dynamos predicted on dimensional grounds by Pétrélis & Fauve (Eur. Phys. J. B, vol. 22, 2001, pp. 271–276). In the subcritical case, the system jumps to a finite-amplitude dynamo branch. The magnetic energy obeys a magneto-geostrophic scaling law (Roberts & Soward, Annu. Rev. Fluid Mech., vol. 4, 1972, pp. 117–154), with a turbulent Elsasser number of the order of unity, where the magnetic diffusivity of the standard Elsasser number appears to be replaced by an eddy diffusivity. In the absence of global rotation, the dynamo bifurcation is subcritical and the saturated magnetic energy obeys the equipartition scaling regime. We consider both the vicinity of the dynamo threshold and the limit of large distance from threshold to put these various scaling behaviours on firm analytical ground.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 283
Author(s):  
Elena Belenkaya ◽  
Igor Alexeev

In the planetary magnetospheres there are specific places connected with velocity breakdown, reconnection, and dynamo processes. Here we pay attention to sliding layers. Sliding layers are formed in the ionosphere, on separatrix surfaces, at the magnetopauses and boundaries of stellar astrospheres, and at the Alfvén radius in the equatorial magnetosphere of rapidly rotating strongly magnetized giant planets. Although sliding contacts usually occur in thin local layers, their influence on the global structure of the surrounding space is very great. Therefore, they are associated with non-local processes that play a key role on a large scale. There can be an exchange between different forms of energy, a generation of strong field-aligned currents and emissions, and an amplification of magnetic fields. Depending on the conditions in the magnetosphere of the planet/exoplanet and in the flow of magnetized plasma passing it, different numbers of sliding layers with different configurations appear. Some are associated with regions of auroras and possible radio emissions. The search for planetary radio emissions is a current task in the detection of exoplanets.


2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


1972 ◽  
Vol 51 (1) ◽  
pp. 97-118 ◽  
Author(s):  
O. M. Phillips

A theory is developed to describe the evolution of the entrainment interface in turbulent flow, in which the surface is convoluted by the large-scale eddies of the motion and at the same time advances relative to the fluid as a result of the micro-scale entrainment process. A pseudo-Lagrangian description of the process indicates that the interface is characterized by the appearance of ‘billows’ of negative curvature, over which surface area is, on average, being generated, separated by re-entrant wedges (lines of very large positive curvature) where surface area is consumed. An alternative Eulerian description allows calculation of the development of the interfacial configuration when the velocity field is prescribed. Several examples are considered in which the prescribed velocity field in the z direction is of the general form w = Wf(x – Ut), where the maximum value of the function f is unity. These indicate the importance of leading points on the surface which are such that small disturbances in the vicinity will move away from the point in all directions. The necessary and sufficient condition for the existence of one or more leading points on the surface is that U [les ] V, the speed of advance of an element of the surface relative to the fluid element at the same point. The existence of leading points is accompanied by the appearance of line discontinuities in the surface slope re-entrant wedges, In these circumstances, the overall speed of advance of the convoluted surface is found to be W + (V2 – U2)½, where W is the maximum outwards velocity in the region; this result is independent of the distribution f.When the speed U with which an ‘eddy’ moves relative to the outside fluid is greater than the speed of advance V of an element of the front, the interface develops neither leading points nor discontinuities in slope; the amplitude of the surface convolutions and the overall entrainment speed are both reduced greatly. In a turbulent flow, therefore, the large-scale motions influencing entrainment are primarily those that move slowly relative to the outside fluid (with relative speed less than V). The experimental results of Kovasznay, Kibens & Blackwelder (1970) are reviewed in the light of these conclusions. It appears that in their experiments the entrainment speed V is of the order fifteen times the Kolmogorov velocity, the large constant of proportionality being apparently the result of augmentation by micro-convolutions of the interface associated with small and meso-scale eddies of the turbulence.


2021 ◽  
Author(s):  
Christina Tsai ◽  
Kuang-Ting Wu

<p>It is demonstrated that turbulent boundary layers are populated by a hierarchy of recurrent structures, normally referred to as the coherent structures. Thus, it is desirable to gain a better understanding of the spatial-temporal characteristics of coherent structures and their impact on fluid particles. Furthermore, the ejection and sweep events play an important role in turbulent statistics. Therefore, this study focuses on the characterizations of flow particles under the influence of the above-mentioned two structures.</p><div><span>With regard to the geometry of turbulent structures, </span><span>Meinhart & Adrian (1995) </span>first highlighted the existence of large and irregularly shaped regions of uniform streamwise momentum zone (hereafter referred to as a uniform momentum zone, or UMZs), regions of relatively similar streamwise velocity with coherence in the streamwise and wall-normal directions.  <span>Subsequently, </span><span>de Silva et al. (2017) </span><span>provided a detection criterion that had previously been utilized to locate the uniform momentum zones (UMZ) and demonstrated the application of this criterion to estimate the spatial locations of the edges that demarcates UMZs.</span></div><div> </div><div>In this study, detection of the existence of UMZs is a pre-process of identifying the coherent structures. After the edges of UMZs are determined, the identification procedure of ejection and sweep events from turbulent flow DNS data should be defined. As such, an integrated criterion of distinguishing ejection and sweep events is proposed. Based on the integrated criterion, the statistical characterizations of coherent structures from available turbulent flow data such as event durations, event maximum heights, and wall-normal and streamwise lengths can be presented.</div>


2018 ◽  
Vol 216 (1) ◽  
pp. 123-129 ◽  
Author(s):  
R J Teed ◽  
C A Jones ◽  
S M Tobias

SUMMARY Turbulence and waves in Earth’s iron-rich liquid outer core are believed to be responsible for the generation of the geomagnetic field via dynamo action. When waves break upon the mantle they cause a shift in the rotation rate of Earth’s solid exterior and contribute to variations in the length-of-day on a ∼6-yr timescale. Though the outer core cannot be probed by direct observation, such torsional waves are believed to propagate along Earth’s radial magnetic field, but as yet no self-consistent mechanism for their generation has been determined. Here we provide evidence of a realistic physical excitation mechanism for torsional waves observed in numerical simulations. We find that inefficient convection above and below the solid inner core traps buoyant fluid forming a density gradient between pole and equator, similar to that observed in Earth’s atmosphere. Consequently, a shearing jet stream—a ‘thermal wind’—is formed near the inner core; evidence of such a jet has recently been found. Owing to the sharp density gradient and influence of magnetic field, convection at this location is able to operate with the turnover frequency required to generate waves. Amplified by the jet it then triggers a train of oscillations. Our results demonstrate a plausible mechanism for generating torsional waves under Earth-like conditions and thus further cement their importance for Earth’s core dynamics.


Sign in / Sign up

Export Citation Format

Share Document