scholarly journals On the Strong Maximum Principle and the Large Time Behavior of Generalized Mean Curvature Flow with the Neumann Boundary Condition

1999 ◽  
Vol 154 (1) ◽  
pp. 107-131 ◽  
Author(s):  
Giga Yoshikazu ◽  
Masaki Ohnuma ◽  
Moto-Hiko Sato
Author(s):  
Nils Dabrock ◽  
Martina Hofmanová ◽  
Matthias Röger

Abstract We are concerned with a stochastic mean curvature flow of graphs over a periodic domain of any space dimension. For the first time, we are able to construct martingale solutions which satisfy the equation pointwise and not only in a generalized (distributional or viscosity) sense. Moreover, we study their large-time behavior. Our analysis is based on a viscous approximation and new global bounds, namely, an $$L^{\infty }_{\omega ,x,t}$$ L ω , x , t ∞ estimate for the gradient and an $$L^{2}_{\omega ,x,t}$$ L ω , x , t 2 bound for the Hessian. The proof makes essential use of the delicate interplay between the deterministic mean curvature part and the stochastic perturbation, which permits to show that certain gradient-dependent energies are supermartingales. Our energy bounds in particular imply that solutions become asymptotically spatially homogeneous and approach a Brownian motion perturbed by a random constant.


2018 ◽  
Vol 62 (2) ◽  
pp. 459-469
Author(s):  
Ben Lambert

AbstractWe prove a gradient estimate for graphical spacelike mean curvature flow with a general Neumann boundary condition in dimension n = 2. This then implies that the mean curvature flow exists for all time and converges to a translating solution.


2019 ◽  
Vol 4 (1) ◽  
pp. 9-29
Author(s):  
Yoshikazu Giga ◽  
Hung V. Tran ◽  
Longjie Zhang

Abstract In this paper, we study an obstacle problem associated with the mean curvature flow with constant driving force. Our first main result concerns interior and boundary regularity of the solution. We then study in details the large time behavior of the solution and obtain the convergence result. In particular, we give full characterization of the limiting profiles in the radially symmetric setting.


Sign in / Sign up

Export Citation Format

Share Document