scholarly journals Existence of martingale solutions and large-time behavior for a stochastic mean curvature flow of graphs

Author(s):  
Nils Dabrock ◽  
Martina Hofmanová ◽  
Matthias Röger

Abstract We are concerned with a stochastic mean curvature flow of graphs over a periodic domain of any space dimension. For the first time, we are able to construct martingale solutions which satisfy the equation pointwise and not only in a generalized (distributional or viscosity) sense. Moreover, we study their large-time behavior. Our analysis is based on a viscous approximation and new global bounds, namely, an $$L^{\infty }_{\omega ,x,t}$$ L ω , x , t ∞ estimate for the gradient and an $$L^{2}_{\omega ,x,t}$$ L ω , x , t 2 bound for the Hessian. The proof makes essential use of the delicate interplay between the deterministic mean curvature part and the stochastic perturbation, which permits to show that certain gradient-dependent energies are supermartingales. Our energy bounds in particular imply that solutions become asymptotically spatially homogeneous and approach a Brownian motion perturbed by a random constant.

2019 ◽  
Vol 4 (1) ◽  
pp. 9-29
Author(s):  
Yoshikazu Giga ◽  
Hung V. Tran ◽  
Longjie Zhang

Abstract In this paper, we study an obstacle problem associated with the mean curvature flow with constant driving force. Our first main result concerns interior and boundary regularity of the solution. We then study in details the large time behavior of the solution and obtain the convergence result. In particular, we give full characterization of the limiting profiles in the radially symmetric setting.


2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
Xiaohuan Wang ◽  
Guangying Lv

This paper is concerned with the large time behavior of disturbed planar fronts in the buffered bistable system inℝn(n≥2). We first show that the large time behavior of the disturbed fronts can be approximated by that of the mean curvature flow with a drift term for all large time up tot=+∞. And then we prove that the planar front is asymptotically stable inL∞(ℝn)under ergodic perturbations, which include quasiperiodic and almost periodic ones as special cases.


Author(s):  
Annalisa Cesaroni ◽  
Heiko Kröner ◽  
Matteo Novaga

We consider the anisotropic mean curvature flow of entire Lipschitz graphs. We prove existence and uniqueness of expanding self-similar solutions which are asymptotic to a prescribed cone, and we characterize the long time behavior of solutions, after suitable rescaling, when the initial datum is a sublinear perturbation of a cone. In the case of regular anisotropies, we prove the stability of self-similar solutions asymptotic to strictly mean convex cones, with respect to perturbations vanishing at infinity. We also show the stability of hyperplanes, with a proof which is novel also for the isotropic mean curvature flow.


Author(s):  
Raffaele Grande

AbstractThe evolution by horizontal mean curvature flow (HMCF) is a partial differential equation in a sub-Riemannian setting with applications in IT and neurogeometry [see Citti et al. (SIAM J Imag Sci 9(1):212–237, 2016)]. Unfortunately this equation is difficult to study, since the horizontal normal is not always well defined. To overcome this problem the Riemannian approximation was introduced. In this article we obtain a stochastic representation of the solution of the approximated Riemannian mean curvature using the Riemannian approximation and we will prove that it is a solution in the viscosity sense of the approximated mean curvature flow, generalizing the result of Dirr et al. (Commun Pure Appl Math 9(2):307–326, 2010).


Sign in / Sign up

Export Citation Format

Share Document