scholarly journals On Basis Properties of Selfadjoint Operator Functions

2000 ◽  
Vol 178 (2) ◽  
pp. 306-342 ◽  
Author(s):  
T.Ya. Azizov ◽  
A. Dijksma ◽  
L.I. Sukhocheva
2004 ◽  
Vol 11 (04) ◽  
pp. 359-375 ◽  
Author(s):  
R. F. Streater

Let H0 be a selfadjoint operator such that Tr e−βH0 is of trace class for some β < 1, and let χɛ denote the set of ɛ-bounded forms, i.e., ∥(H0+C)−1/2−ɛX(H0+C)−1/2+ɛ∥ < C for some C > 0. Let χ := Span ∪ɛ∈(0,1/2]χɛ. Let [Formula: see text] denote the underlying set of the quantum information manifold of states of the form ρx = e−H0−X−ψx, X ∈ χ. We show that if Tr e−H0 = 1. 1. the map Φ, [Formula: see text] is a quantum Young function defined on χ 2. The Orlicz space defined by Φ is the tangent space of [Formula: see text] at ρ0; its affine structure is defined by the (+1)-connection of Amari 3. The subset of a ‘hood of ρ0, consisting of p-nearby states (those [Formula: see text] obeying C−1ρ1+p ≤ σ ≤ Cρ1 − p for some C > 1) admits a flat affine connection known as the (−1) connection, and the span of this set is part of the cotangent space of [Formula: see text] 4. These dual structures extend to the completions in the Luxemburg norms.


2007 ◽  
Vol 341 (2) ◽  
pp. 239-253 ◽  
Author(s):  
K. R. Davidson ◽  
R. H. Levene ◽  
L. W. Marcoux ◽  
H. Radjavi

1978 ◽  
Vol 1 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Bert den Boer
Keyword(s):  

2007 ◽  
Vol 19 (10) ◽  
pp. 1071-1115 ◽  
Author(s):  
ABDALLAH KHOCHMAN

We consider the selfadjoint operator H = H0+ V, where H0is the free semi-classical Dirac operator on ℝ3. We suppose that the smooth matrix-valued potential V = O(〈x〉-δ), δ > 0, has an analytic continuation in a complex sector outside a compact. We define the resonances as the eigenvalues of the non-selfadjoint operator obtained from the Dirac operator H by complex distortions of ℝ3. We establish an upper bound O(h-3) for the number of resonances in any compact domain. For δ > 3, a representation of the derivative of the spectral shift function ξ(λ,h) related to the semi-classical resonances of H and a local trace formula are obtained. In particular, if V is an electro-magnetic potential, we deduce a Weyl-type asymptotics of the spectral shift function. As a by-product, we obtain an upper bound O(h-2) for the number of resonances close to non-critical energy levels in domains of width h and a Breit–Wigner approximation formula for the derivative of the spectral shift function.


1992 ◽  
Vol 15 (1) ◽  
pp. 30-42 ◽  
Author(s):  
Hansj�rg Linden ◽  
Josef Menzel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document