EFFECT OF ELASTIC FOUNDATION ON ASYMMETRIC VIBRATION OF POLAR ORTHOTROPIC LINEARLY TAPERED CIRCULAR PLATES

2002 ◽  
Vol 254 (3) ◽  
pp. 411-426 ◽  
Author(s):  
U.S. GUPTA ◽  
A.H. ANSARI
2005 ◽  
Vol 05 (03) ◽  
pp. 387-408 ◽  
Author(s):  
N. BHARDWAJ ◽  
A. P. GUPTA

This paper is concerned with the axisymmetric vibration problem of polar orthotropic circular plates of quadratically varying thickness and resting on an elastic foundation. The problem is solved by using the Rayleigh–Ritz method with boundary characteristic orthonormal polynomials for approximating the deflection function. Numerical results are computed for frequencies, nodal radii and mode shapes. Three-dimensional graphs are also plotted for the first four normal modes of axisymmetric vibration of plates with free, simply-supported and clamped edge conditions for various values of taper, orthotropy and foundation parameters.


2008 ◽  
Vol 15 (6) ◽  
pp. 599-617 ◽  
Author(s):  
N. Bhardwaj ◽  
A.P. Gupta ◽  
K.K. Choong

In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile, material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge conditions are shown and discussed. It is found that (a) higher elastic property in circumferential direction leads to higher stiffness against lateral vibration; (b) Lateral vibration characteristics ofF-Fplatesis more sensitive towards parametric changes in material orthotropy and foundation stiffness thanC-CandS-Splates; (c) Effect of quadratical thickness variation on fundamental frequency is more significant in cases ofC-CandS-S platesthan that ofF-Fplates. Thickness profile which is convex relative to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and (d) Fundamental mode of vibration ofC-CandS-Splatesis axisymmetrical while that ofF-Fplatesis asymmetrical.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
A. H. Ansari

Forced axisymmetric response of polar orthotropic circular plates of linearly varying thickness resting on Winkler type of elastic foundation has been studied on the basis of classical plate theory. An approximate solution of problem has been obtained by Rayleigh Ritz method, which employs functions based upon the static deflection of polar orthotropic circular plates. The effect of transverse loadings has been studied for orthotropic circular plate resting on elastic foundation. The transverse deflections and bending moments are presented for various values of taper parameter, rigidity ratio, foundation parameter, and flexibility parameter under different types of loadings. A comparison of results with those available in literature shows an excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document