Modelling the Collective Building of Complex Architectures in Social Insects with Lattice Swarms

1995 ◽  
Vol 177 (4) ◽  
pp. 381-400 ◽  
Author(s):  
Guy Theraulaz ◽  
Eric Bonabeau
2015 ◽  
Vol 2 (11) ◽  
pp. 150360 ◽  
Author(s):  
Nobuaki Mizumoto ◽  
Kazuya Kobayashi ◽  
Kenji Matsuura

Building behaviours occur in various organisms from bacteria to humans. Social insects build various structures such as large nests and underground galleries, achieved by self-organization. Structures built by social insects have recently been demonstrated to vary widely in size and shape within a species, even under the same environmental conditions. However, little is known about how intraspecific variation in structures emerges from collective behaviours. Here we show that the colony variation of structures can be generated by simply changing two behavioural parameters of group members, even with the same building algorithm. Our laboratory experiment of termite shelter tube construction demonstrated clear intercolonial variation, and a two-dimensional lattice model showed that it can be attributed to the extent of positive feedback and the number of individuals engaged in building. This study contributes to explaining the great diversity of structures emerging from collective building in social insects.


Author(s):  
Eric Bonabeau ◽  
Marco Dorigo ◽  
Guy Theraulaz

Social insect nest architectures can be complex, intricate structures. Stigmergy (see section 1.2.3), that is, the coordination of activities through the environment, is an important mechanism underlying nest construction in social insects. Two types of stigmergy are distinguished: quantitative, or continuous stigmergy, in which the different stimuli that trigger behavior are quantitatively different; and qualitative, or discrete stigmergy, in which stimuli can be classified into different classes that differ qualitatively. If quantitative stigmergy can explain the emergence of pillars in termites, the building behavior of the paper wasps Polistes dominulus seems to be better described by qualitative stigmergy. In this chapter, a simple agent-based model inspired by discrete stigmergy is introduced. In the model, agents move in a three-dimensional grid and drop elementary building blocks depending on the configuration of blocks in their neighborhood. From the viewpoint of bricks, this model is a model of self-assembly. The model generates a large proportion of random or space-filling forms, but some patterns appear to be structured. Some of the patterns even look like wasp nests. The properties of the structured shapes obtained with the model, and of the algorithms that generate them, are reviewed. Based on these properties, a fitness function is constructed so that structured architectures have a large fitness and unstructured patterns a small fitness. A genetic algorithm based on the fitness function is used to explore the space of architectures. Several examples of self-assembling systems in robotics, engineering, and architecture are described. Self-assembling or self-reconfigurable robotic systems, although they are not directly inspired by nest construction in social insects, could benefit from the discrete-stigmergy model of nest building. The method of evolutionary design, that is, the creation of new designs by computers using evolutionary algorithms, is a promising way of exploring the patterns that self-assembling models can produce. Many animals can produce very complex architectures that fulfill numerous functional and adaptive requirements (protection from predators, substrate of social life and reproductive activities, thermal regulation, etc.).


1894 ◽  
Vol 38 (987supp) ◽  
pp. 15780-15781
Author(s):  
C. V. Riley
Keyword(s):  

2019 ◽  
Author(s):  
Mohammad Mosharraf Hossain ◽  
Joshua Atkinson ◽  
Scott Hartley

Dissipative (nonequilibrium) assembly powered by chemical fuels has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single transient covalent bond. Here, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycle is assembled efficiently as a consequence of both fuel-dependent and -independent mechanisms: it undergoes slower decomposition, building up as the fuel recycles the components, and is a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out-of-equilibrium species.


2019 ◽  
Author(s):  
Mohammad Mosharraf Hossain ◽  
Joshua Atkinson ◽  
Scott Hartley

Dissipative (nonequilibrium) assembly powered by chemical fuels has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single transient covalent bond. Here, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycle is assembled efficiently as a consequence of both fuel-dependent and -independent mechanisms: it undergoes slower decomposition, building up as the fuel recycles the components, and is a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out-of-equilibrium species.


Sign in / Sign up

Export Citation Format

Share Document