Psychophysical and physiological studies of the precedence effect and echo threshold in the behaving cat

2005 ◽  
pp. 428-434 ◽  
Author(s):  
Daniel J. Tollin ◽  
Micheal L. Dent ◽  
Tom C.T. Yin
1995 ◽  
Vol 74 (6) ◽  
pp. 2469-2486 ◽  
Author(s):  
D. C. Fitzpatrick ◽  
S. Kuwada ◽  
R. Batra ◽  
C. Trahiotis

1. In most natural environments, sound waves from a single source will reach a listener through both direct and reflected paths. Sound traveling the direct path arrives first, and determines the perceived location of the source despite the presence of reflections from many different locations. This phenomenon is called the "law of the first wavefront" or "precedence effect." The time at which the reflection is first perceived as a separately localizable sound defines the end of the precedence window and is called "echo threshold." The precedence effect represents an important property of the auditory system, the neural basis for which has only recently begun to be examined. Here we report the responses of single neurons in the inferior colliculus (IC) and superior olivary complex (SOC) of the unanesthetized rabbit to a sound and its simulated reflection. 2. Stimuli were pairs of monaural or binaural clicks delivered through earphones. The leading click, or conditioner, simulated a direct sound, and the lagging click, or probe, simulated a reflection. Interaural time differences (ITDs) were introduced in the binaural conditioners and probes to adjust their simulated locations. The probe was always set at the neuron's best ITD, whereas the conditioner was set at the neuron's best ITD or its worst ITD. To measure the time course of the effects of the conditioner on the probe, we examined the response to the probe as a function of the conditioner-probe interval (CPI). 3. When IC neurons were tested with conditioners and probes set at the neuron's best ITD, the response to the probe as a function of CPI had one of two forms: early-low or early-high. In early-low neurons the response to the probe was initially suppressed but recovered monotonically at longer CPIs. Early-high neurons showed a nonmonotonic recovery pattern. In these neurons the maximal suppression did not occur at the shortest CPIs, but rather after a period of less suppression. Beyond this point, recovery was similar to that of early-low neurons. The presence of early-high neurons meant that the overall population was never entirely suppressed, even at short CPIs. Taken as a whole. CPIs for 50% recovery of the response to the probe among neurons ranged from 1 to 64 ms with a median of approximately 6 ms. 4. The above results are consistent with the time course of the precedence effect for the following reasons. 1) The lack of complete suppression at any CPI is compatible with behavioral results that show the presence of a probe can be detected even at short CPIs when it is not separately localizable. 2) At a CPI corresponding to echo threshold for human listeners (approximately 4 ms CPI) there was a considerable response to the probe, consistent with it being heard as a separately localizable sound at this CPI. 3) Full recovery for all neurons required a period much longer than that associated with the precedence effect. This is consistent with the relatively long time required for conditioners and probes to be heard with equal loudness. 5. Conditioners with either the best ITD or worst ITD were used to determine the effect of ITD on the response to the probe. The relative amounts of suppression caused by the two ITDs varied among neurons. Some neurons were suppressed about equally by both types of conditioners, others were suppressed more by a conditioner with the best ITD, and still others by a conditioner with the worst ITD. Because the best ITD and worst ITD presumably activate different pathways, these results suggest that different neurons receive a different balance of inhibition from different sources. 6. The recovery functions of neurons not sensitive to ITDs were similar to those of ITD-sensitive, neurons. This suggests that the time course of suppression may be common among different IC populations. 7. We also studied neurons in the SOC. Although many showed binaural interactions, none were sensitive to ITDs. Thus the response of this population may not be


2004 ◽  
Vol 92 (6) ◽  
pp. 3286-3297 ◽  
Author(s):  
Daniel J. Tollin ◽  
Luis C. Populin ◽  
Tom C. T. Yin

Several auditory spatial illusions, collectively called the precedence effect (PE), occur when transient sounds are presented from two different spatial locations but separated in time by an interstimulus delay (ISD). For ISDs in the range of localization dominance (<10 ms), a single fused sound is typically located near the leading source location only, as if the location of the lagging source were suppressed. For longer ISDs, both the leading and lagging sources can be heard and localized, and the shortest ISD where this occurs is called the echo threshold. Previous physiological studies of the extracellular responses of single neurons in the inferior colliculus (IC) of anesthetized cats and unanesthetized rabbits with sounds known to elicit the PE have shown correlates of these phenomena though there were differences in the physiologically measured echo thresholds. Here we recorded in the IC of awake, behaving cats using stimuli that we have shown to evoke behavioral responses that are consistent with the precedence effect. For small ISDs, responses to the lag were reduced or eliminated consistent with psychophysical data showing that sound localization is based on the leading source. At longer ISDs, the responses to the lagging source recovered at ISDs comparable to psychophysically measured echo thresholds. Thus it appears that anesthesia, and not species differences, accounts for the discrepancies in the earlier studies.


1998 ◽  
Vol 80 (3) ◽  
pp. 1302-1316 ◽  
Author(s):  
Ruth Y. Litovsky ◽  
Tom C. T. Yin

Litovsky, Ruth Y. and Tom C. T. Yin. Physiological studies of the precedence effect in the inferior colliculus of the cat. II. Neural mechanisms. J. Neurophysiol. 80: 1302–1316, 1998. We studied the responses of neurons in the inferior colliculus (IC) of cats to stimuli known to evoke the precedence effect (PE). This paper focuses on stimulus conditions that probe the neural mechanisms underlying the PE but that are not usually encountered in a natural situation. Experiments were conducted under both free-field (anechoic chamber) and dichotic (headphones) conditions. We found that in free field the amount of suppression of the lagging response depended on the location of the leading source. With stimuli in the azimuthal plane, the majority (84%) of units showed stronger suppression of the lagging response for a leading stimulus placed in the cell's responsive area as compared with a lead in the unresponsive field. A smaller number of units showed stronger suppression for a lead placed in the unresponsive field, and a few showed little effect of the lead location. In the elevational plane, there was less sensitivity of the leading source to changes in location, but for those cells in which there was sensitivity, suppression was always stronger when the lead was in the cell's responsive area. Studies on stimulus locations also were conducted under dichotic conditions by varying the interaural differences in time (ITD) of the leading source. Results were consistent with those obtained in free field, suggesting that ITDs play an important role in determining the amount of suppression that was observed as a function of leading stimulus location. In addition to location and ITD, we also studied the effect of varying the relative levels of the lead and lag as well as stimulus duration. For all units studied, increasing the level of the leading stimulus while holding the lagging stimulus constant resulted in increased suppression. Similar effects of leading source level were observed in azimuth and elevation. The effect of varying the duration of the leading source also showed that longer duration stimuli produce stronger suppression; this finding was observed both in azimuth and elevation. We also compared the suppression observed under binaural and monaural contralateral conditions and found a mixed effect: some neurons show stronger suppression under binaural conditions, others to monaural contralateral conditions, and still others show no effect. The results presented here support the hypothesis that the PE reflects a long-lasting inhibition evoked by the leading stimulus. Five possible sources for the inhibition are considered: the auditory nerve, intrinsic circuits in the cochlear nucleus, medial and lateral nuclei of the trapezoid body inhibition to the medial superior olive, dorsal nucleus of the lateral lemniscus (DNLL) inhibition to the ICC, and intrinsic circuits in the ICC itself.


1998 ◽  
Vol 80 (3) ◽  
pp. 1285-1301 ◽  
Author(s):  
Ruth Y. Litovsky ◽  
Tom C. T. Yin

Litovsky, Ruth Y. and Tom C. T. Yin. Physiological studies of the precedence effect in the inferior colliculus of the cat. I. Correlates of psychophysics. J. Neurophysiol. 80: 1285–1301, 1998. The precedence effect (PE) is experienced when two spatially separated sounds are presented with such a brief delay that only a single auditory image at or toward the location of the leading source is perceived. The responses of neurons in the central nucleus of the inferior colliculus (ICC) of cats were studied using stimuli that are known to elicit the PE, focusing on the effects of changes in stimulus conditions that a listener might encounter in a natural situation. Experiments were conducted under both free-field (anechoic chamber) and dichotic (headphones) conditions. In free field, the PE was simulated by presenting two sounds from different loudspeakers with one sound delayed relative to the other. Either click or noise stimuli (2- to 10-ms duration) were used. Dichotically, the same conditions were simulated by presenting two click or noise pairs separated by an interstimulus delay (ISD) with interaural time differences (ITDs) imposed separately for each pair. At long ISDs, all neurons responded to both leading and lagging sources as if they were delivered alone. As the ISDs were shortened, the lagging response became suppressed. The ISD of half-maximal suppression varied considerably within the population of neurons studied, ranging from 2 to 100 ms, with means of 35 and 38 ms for free field and dichotic conditions, respectively. Several correlates of psychophysical findings were observed in ICC neurons: suppression was usually stronger with lower overall stimulus level and longer duration stimuli. Suppression also was compared along the azimuth and elevation in free field by placing the lagging source at (0°,0°), which is common to both axes, and the leading sources at locations along either plane that generated similar discharge rates. All neurons that showed suppression along the azimuth also did so in the elevation. In addition, there was a high correlation in the ISD of half-maximal suppression along the two planes ( r = 0.87). These findings suggest that interaural difference cues, which are robust along the horizontal axis but minimal in the median plane, are not necessary for neural correlates of the PE to be manifested. Finally, single-neuron responses did not demonstrate a correlate of build-up of suppression, a phenomenon whereby echo suppression accumulates with ongoing stimulation. This finding adds credibility to theories about the PE that argue for a “higher order” component of the PE.


2010 ◽  
Vol 103 (1) ◽  
pp. 446-457 ◽  
Author(s):  
Daniel J. Tollin ◽  
Elizabeth M. McClaine ◽  
Tom C. T. Yin

The precedence effect (PE) is an auditory spatial illusion whereby two identical sounds presented from two separate locations with a delay between them are perceived as a fused single sound source whose position depends on the value of the delay. By training cats using operant conditioning to look at sound sources, we have previously shown that cats experience the PE similarly to humans. For delays less than ±400 μs, cats exhibit summing localization, the perception of a “phantom” sound located between the sources. Consistent with localization dominance, for delays from 400 μs to ∼10 ms, cats orient toward the leading source location only, with little influence of the lagging source. Finally, echo threshold was reached for delays >10 ms, where cats first began to orient to the lagging source. It has been hypothesized by some that the neural mechanisms that produce facets of the PE, such as localization dominance and echo threshold, must likely occur at cortical levels. To test this hypothesis, we measured both pinnae position, which were not under any behavioral constraint, and eye position in cats and found that the pinnae orientations to stimuli that produce each of the three phases of the PE illusion was similar to the gaze responses. Although both eye and pinnae movements behaved in a manner that reflected the PE, because the pinnae moved with strikingly short latencies (∼30 ms), these data suggest a subcortical basis for the PE and that the cortex is not likely to be directly involved.


2009 ◽  
Vol 102 (2) ◽  
pp. 724-734 ◽  
Author(s):  
Micheal L. Dent ◽  
Daniel J. Tollin ◽  
Tom C. T. Yin

Psychophysical experiments on the precedence effect (PE) in cats have shown that they localize pairs of auditory stimuli presented from different locations in space based on the spatial position of the stimuli and the interstimulus delay (ISD) between the stimuli in a manner similar to humans. Cats exhibit localization dominance for pairs of transient stimuli with |ISDs| from ∼0.4 to 10 ms, summing localization for |ISDs| < 0.4 ms and breakdown of fusion for |ISDs| > 10 ms, which is the approximate echo threshold. The neural correlates to the PE have been described in both anesthetized and unanesthetized animals at many levels from auditory nerve to cortex. Single-unit recordings from the inferior colliculus (IC) and auditory cortex of cats demonstrate that neurons respond to both lead and lag sounds at ISDs above behavioral echo thresholds, but the response to the lag is reduced at shorter ISDs, consistent with localization dominance. Here the influence of the relative locations of the leading and lagging sources on the PE was measured behaviorally in a psychophysical task and physiologically in the IC of awake behaving cats. At all configurations of lead-lag stimulus locations, the cats behaviorally exhibited summing localization, localization dominance, and breakdown of fusion. Recordings from the IC of awake behaving cats show neural responses paralleling behavioral measurements. Both behavioral and physiological results suggest systematically shorter echo thresholds when stimuli are further apart in space.


2003 ◽  
Vol 90 (4) ◽  
pp. 2149-2162 ◽  
Author(s):  
Daniel J. Tollin ◽  
Tom C.T. Yin

The precedence effect (PE) describes several spatial perceptual phenomena that occur when similar sounds are presented from two different locations and separated by a delay. The mechanisms that produce the effect are thought to be responsible for the ability to localize sounds in reverberant environments. Although the physiological bases for the PE have been studied, little is known about how these sounds are localized by species other than humans. Here we used the search coil technique to measure the eye positions of cats trained to saccade to the apparent locations of sounds. To study the PE, brief broadband stimuli were presented from two locations, with a delay between their onsets; the delayed sound meant to simulate a single reflection. Although the cats accurately localized single sources, the apparent locations of the paired sources depended on the delay. First, the cats exhibited summing localization, the perception of a “phantom” sound located between the sources, for delays < ±400 μs for sources positioned in azimuth along the horizontal plane, but not for sources positioned in elevation along the sagittal plane. Second, consistent with localization dominance, for delays from 400 μs to about 10 ms, the cats oriented toward the leading source location only, with little influence of the lagging source, both for horizontally and vertically placed sources. Finally, the echo threshold was reached for delays >10 ms, where the cats first began to orient to the lagging source on some trials. These data reveal that cats experience the PE phenomena similarly to humans.


Sign in / Sign up

Export Citation Format

Share Document