scholarly journals Physiological Studies of the Precedence Effect in the Inferior Colliculus of the Cat. I. Correlates of Psychophysics

1998 ◽  
Vol 80 (3) ◽  
pp. 1285-1301 ◽  
Author(s):  
Ruth Y. Litovsky ◽  
Tom C. T. Yin

Litovsky, Ruth Y. and Tom C. T. Yin. Physiological studies of the precedence effect in the inferior colliculus of the cat. I. Correlates of psychophysics. J. Neurophysiol. 80: 1285–1301, 1998. The precedence effect (PE) is experienced when two spatially separated sounds are presented with such a brief delay that only a single auditory image at or toward the location of the leading source is perceived. The responses of neurons in the central nucleus of the inferior colliculus (ICC) of cats were studied using stimuli that are known to elicit the PE, focusing on the effects of changes in stimulus conditions that a listener might encounter in a natural situation. Experiments were conducted under both free-field (anechoic chamber) and dichotic (headphones) conditions. In free field, the PE was simulated by presenting two sounds from different loudspeakers with one sound delayed relative to the other. Either click or noise stimuli (2- to 10-ms duration) were used. Dichotically, the same conditions were simulated by presenting two click or noise pairs separated by an interstimulus delay (ISD) with interaural time differences (ITDs) imposed separately for each pair. At long ISDs, all neurons responded to both leading and lagging sources as if they were delivered alone. As the ISDs were shortened, the lagging response became suppressed. The ISD of half-maximal suppression varied considerably within the population of neurons studied, ranging from 2 to 100 ms, with means of 35 and 38 ms for free field and dichotic conditions, respectively. Several correlates of psychophysical findings were observed in ICC neurons: suppression was usually stronger with lower overall stimulus level and longer duration stimuli. Suppression also was compared along the azimuth and elevation in free field by placing the lagging source at (0°,0°), which is common to both axes, and the leading sources at locations along either plane that generated similar discharge rates. All neurons that showed suppression along the azimuth also did so in the elevation. In addition, there was a high correlation in the ISD of half-maximal suppression along the two planes ( r = 0.87). These findings suggest that interaural difference cues, which are robust along the horizontal axis but minimal in the median plane, are not necessary for neural correlates of the PE to be manifested. Finally, single-neuron responses did not demonstrate a correlate of build-up of suppression, a phenomenon whereby echo suppression accumulates with ongoing stimulation. This finding adds credibility to theories about the PE that argue for a “higher order” component of the PE.

1999 ◽  
Vol 82 (1) ◽  
pp. 164-175 ◽  
Author(s):  
Kevin A. Davis ◽  
Ramnarayan Ramachandran ◽  
Bradford J. May

Single units in the central nucleus of the inferior colliculus (ICC) of unanesthetized decerebrate cats can be grouped into three distinct types (V, I, and O) according to the patterns of excitation and inhibition revealed in contralateral frequency response maps. This study extends the description of these response types by assessing their ipsilateral and binaural response map properties. Here the nature of ipsilateral inputs is evaluated directly using frequency response maps and compared with results obtained from methods that rely on sensitivity to interaural level differences (ILDs). In general, there is a one-to-one correspondence between observed ipsilateral input characteristics and those inferred from ILD manipulations. Type V units receive ipsilateral excitation and show binaural facilitation (EE properties); type I and type O units receive ipsilateral inhibition and show binaural excitatory/inhibitory (EI) interactions. Analyses of binaural frequency response maps show that these ILD effects extend over the entire receptive field of ICC units. Thus the range of frequencies that elicits excitation from type V units is expanded with increasing levels of ipsilateral stimulation, whereas the excitatory bandwidth of type I and O units decreases under the same binaural conditions. For the majority of ICC units, application of bicuculline, an antagonist for GABAA-mediated inhibition, does not alter the basic effects of binaural stimulation; rather, it primarily increases spontaneous and maximum discharge rates. These results support our previous interpretations of the putative dominant inputs to ICC response types and have important implications for midbrain processing of competing free-field sounds that reach the listener with different directional signatures.


1987 ◽  
Vol 57 (4) ◽  
pp. 1185-1200 ◽  
Author(s):  
L. M. Aitkin ◽  
R. L. Martin

The responses to changes in stimulus azimuth of 220 high best-frequency (BF) (greater than 3 kHz) units in the central nucleus of the inferior colliculus of the anesthetized cat were studied with BF tones (220 units) and noise stimuli (84 units). By this means we hoped to gain some insights into the way the azimuthal locations of high BF stimuli were represented in the inferior colliculus. For each unit the discharge rate was determined for stimuli located along a plane tilted at 20 degrees above the horizontal. This plane was chosen to optimize pinna directionality. Locations in the frontal field were sampled in 10-20 degree steps around a 170 degree arc. These measurements were repeated at a number of different stimulus intensities until the directional properties of the unit became clear. Units for which the functions relating discharge rate to azimuth for a given stimulus showed a clear feature (peak or border), the azimuthal location of which varied little with intensities between 20 and 40 dB above threshold, were defined as being azimuth selective for that stimulus. Only 13% of units were azimuth selective for BF tones, whereas 44% were selective for noise. Many azimuth functions for selective units were of the plateau-shaped type for which relatively high discharge rates occurring at most contralateral azimuths declined steeply to near zero and remained low for most ipsilateral azimuths. These plateau-shaped functions were most common for tonal stimuli. Other functions showed a fixed azimuth of maximum firing (best azimuth); these were more common for noise than for tonal stimuli. Detailed azimuth functions for both tone and noise stimuli were measured for 63 units. Some exhibited the same kind of azimuth function to both stimuli. However, 18 units were azimuth selective to noise but not to tones. The borders of plateau-shaped functions obtained using both noise and tonal stimuli were concentrated within 20 degrees of the median plane. Very few units had borders that spanned peripheral ipsilateral or contralateral azimuths. Although the best azimuths of some noise azimuth functions were observed to lie at these peripheral azimuths, the majority occurred around 20 degrees contralateral to the median plane. The recording sites for units were related to a three-by-three matrix of rostrocaudal and mediolateral locations across the central nucleus. Units that were azimuth selective to noise were distributed fairly evenly throughout the central nucleus, whereas units azimuth selective to tones formed highest proportions rostrally.(ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 80 (3) ◽  
pp. 1302-1316 ◽  
Author(s):  
Ruth Y. Litovsky ◽  
Tom C. T. Yin

Litovsky, Ruth Y. and Tom C. T. Yin. Physiological studies of the precedence effect in the inferior colliculus of the cat. II. Neural mechanisms. J. Neurophysiol. 80: 1302–1316, 1998. We studied the responses of neurons in the inferior colliculus (IC) of cats to stimuli known to evoke the precedence effect (PE). This paper focuses on stimulus conditions that probe the neural mechanisms underlying the PE but that are not usually encountered in a natural situation. Experiments were conducted under both free-field (anechoic chamber) and dichotic (headphones) conditions. We found that in free field the amount of suppression of the lagging response depended on the location of the leading source. With stimuli in the azimuthal plane, the majority (84%) of units showed stronger suppression of the lagging response for a leading stimulus placed in the cell's responsive area as compared with a lead in the unresponsive field. A smaller number of units showed stronger suppression for a lead placed in the unresponsive field, and a few showed little effect of the lead location. In the elevational plane, there was less sensitivity of the leading source to changes in location, but for those cells in which there was sensitivity, suppression was always stronger when the lead was in the cell's responsive area. Studies on stimulus locations also were conducted under dichotic conditions by varying the interaural differences in time (ITD) of the leading source. Results were consistent with those obtained in free field, suggesting that ITDs play an important role in determining the amount of suppression that was observed as a function of leading stimulus location. In addition to location and ITD, we also studied the effect of varying the relative levels of the lead and lag as well as stimulus duration. For all units studied, increasing the level of the leading stimulus while holding the lagging stimulus constant resulted in increased suppression. Similar effects of leading source level were observed in azimuth and elevation. The effect of varying the duration of the leading source also showed that longer duration stimuli produce stronger suppression; this finding was observed both in azimuth and elevation. We also compared the suppression observed under binaural and monaural contralateral conditions and found a mixed effect: some neurons show stronger suppression under binaural conditions, others to monaural contralateral conditions, and still others show no effect. The results presented here support the hypothesis that the PE reflects a long-lasting inhibition evoked by the leading stimulus. Five possible sources for the inhibition are considered: the auditory nerve, intrinsic circuits in the cochlear nucleus, medial and lateral nuclei of the trapezoid body inhibition to the medial superior olive, dorsal nucleus of the lateral lemniscus (DNLL) inhibition to the ICC, and intrinsic circuits in the ICC itself.


1984 ◽  
Vol 52 (1) ◽  
pp. 1-17 ◽  
Author(s):  
L. M. Aitkin ◽  
G. R. Gates ◽  
S. C. Phillips

This study aimed to classify the responses of single units in the auditory midbrain to acoustic stimuli presented in the free field in order to characterize those units likely to have a role in sound localization in the horizontal plane. The responses of 131 single units in the inferior colliculus of the cat and the brush-tailed possum were studied using tone and noise-burst stimuli presented from a speaker capable of movement at any point along a plane 10 degrees above the horizontal plane. Speaker positions along this plane are referred to as speaker azimuths; those on the same side as the recorded inferior colliculus as ipsilateral, and on the opposite side as contralateral, azimuths. For each unit, spike counts were measured as a function of azimuth either at the best frequency (BF) or using noise bursts. These functions are referred to as azimuth functions and were usually measured for at least two intensities, between 10 and 70 dB above threshold. The recording sites of most units were identified histologically with the aid of microlesions and were related to the major subdivisions of the inferior colliculus: the central nucleus (ICC), the lateral part of the external nucleus (ICX), and the rostroventral process (R-ICX). Two units were located in the pericentral nucleus and two in the dorsal nucleus of the lateral lemniscus. Two major classes of neuron were identified: omnidirectional and directionally sensitive. Omnidirectional units exhibited azimuth functions that were either flat or that declined gradually at progressively ipsilateral azimuths. For the latter units, discharge rates at all points monotonically increased with stimulus intensity. There was no indication, for either type of omnidirectional unit, of significant binaural interaction. A good correlation was found between the summed proportions of excitatory-excitatory (EE) and monaural (EO) units observed in dichotic studies (46-55%) and the proportion of omnidirectional units in the present study (47%). A subgroup of directionally sensitive units (36% of the total) displayed azimuth functions for which the azimuthal position of the discharge border or peak firing azimuth remained essentially unaltered over a range of stimulus intensities. These azimuth-selective units are likely to have a role in the detection of the location of stimuli in the horizontal plane and appear to include units that would be considered excitatory-inhibitory (EI) or delay sensitive in dichotic studies. The azimuths over which directionally sensitive units showed their marked directional effects were influenced by the position of the contralateral pinna.(ABSTRACT TRUNCATED AT 400 WORDS)


1987 ◽  
Vol 57 (4) ◽  
pp. 1130-1147 ◽  
Author(s):  
M. N. Semple ◽  
L. M. Kitzes

The central auditory system could encode information about the location of a high-frequency sound source by comparing the sound pressure levels at the ears. Two potential computations are the interaural intensity difference (IID) and the average binaural intensity (ABI). In this study of the central nucleus of the inferior colliculus (ICC) of the anesthetized gerbil, we demonstrate that responses of 85% of the 97 single units in our sample were jointly influenced by IID and ABI. For a given ABI, discharge rate of most units is a sigmoidal function of IID, and peak rates occur at IIDs favoring the contralateral ear. Most commonly, successive increments of ABI cause successive shifts of the IID functions toward IIDs favoring the ipsilateral ear. Neurons displaying this behavior include many that would conventionally be classified EI (receiving predominantly excitatory input arising from one ear and inhibitory input from the other), many that would be classified EE (receiving predominantly excitatory input arising from each ear), and all that are responsive only to contralateral stimulation. The IID sensitivity of a very few EI neurons is unaffected by ABI, except near threshold. Such units could provide directional information that is independent of source intensity. A few EE neurons are very sensitive to ABI, but are minimally sensitive to IID. Nevertheless, our data indicate that responses of most EE units in ICC are strongly dominated by excitation of contralateral origin. For some units, discharge rate is nonmonotonically related to IID and is maximal when the stimuli at the two ears are of comparable sound pressure. This preference for zero IID is common for all binaural levels. Many EI neurons respond nonmonotonically to ABI. Discharge rates are greater for IIDs representative of contralateral space and are maximal at a single best ABI. For a subset of these neurons, the influence arising from the ipsilateral ear is comprised of a mixture of excitation and inhibition. As a consequence, discharge rates are nonmonotonically related not only to ABI but also to IID. This dual nonmonotonicity creates a clear focus of peak response at a particular ABI/IID combination. Because of their mixed monaural influences, such units would be ascribed to different classes of the conventional (EE/EI) binaural classification scheme depending on the binaural level presented. Several response classes were identified in this study, and each might contribute differently to the encoding of spatial information.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 77 (6) ◽  
pp. 2945-2965 ◽  
Author(s):  
Adrian Rees ◽  
Ali Sarbaz ◽  
Manuel S. Malmierca ◽  
Fiona E. N. Le Beau

Rees, Adrian, Ali Sarbaz, Manuel S. Malmierca, and Fiona E. N. Le Beau. Regularity of firing of neurons in the inferior colliculus. J. Neurophysiol. 77: 2945–2965, 1997. The spike discharge regularity of 254 tonically firing units in the inferior colliculus (IC) of the anesthetized guinea pig was studied in response to tones presented at best frequency (BF) to the ear contralateral to the recorded IC. Regularity of firing was measured by calculating the coefficient of variation (CV) as a function of time over the course of a unit's response. Two hundred and fifteen units (56 under urethan and 159 under chloralose anesthesia) in the central nucleus of the IC (CNIC) were studied in detail. In response to tones at 15–25 dB above threshold, 80% of units in the urethan sample fired regularly (CV < 0.5) during their sustained response, and 46% were highly regular (CV ≤ 0.35). For chloralose the values were 68% and 23%, respectively. Units recorded under urethan were significantly more regular than those recorded under chloralose. For units in the sample with a measurable onset CV, 63% were regular and 44% highly regular under urethan, and 73% were regular and 54% highly regular under chloralose. The units' peristimulus time histogram (PSTH) patterns were classified into subdivisions of four categories: choppers [9%: chop-sustained (Cs), chop-onset (Co)]; pausers [42%: pauser-chop-sustained(P/Cs), pauser-chop-onset (P/Co), pauser-no-chop]; on-sustained(43%: primary-type, L-type, h-type); and sustained (6%). The presence of chopping was a reliable predictor of regularity: Cs and P/Cs units were highly regular throughout their response, whereas Co and P/Co units were highly regular at onset and became less regular. Some units in the other PSTH categories were highly regular despite the absence of chopping, and units with virtually identical PSTHs showed very different sustained CVs. Regularity was measured as a function of firing rate in 71 units. In 23%, regularity remained constant when firing rate changed with stimulus level. Forty-six percent fired more regularly as firing rate increased, 8% fired less regularly, and 23% of units showed no consistent relationship between CV and firing rate. Regularity did not correlate with the neurons' frequency response areas or BFs. Regular firing was also found in a smaller sample of units recorded in cortices surrounding the CNIC. We conclude that regular firing is a characteristic feature of most neurons in the IC. Regularity is a specific feature correlated with four PSTH types (Cs, Co, P/Cs, and P/Co). Other PSTH types may or may not exhibit regularity.


1986 ◽  
Vol 55 (3) ◽  
pp. 587-603 ◽  
Author(s):  
M. B. Calford ◽  
D. R. Moore ◽  
M. E. Hutchings

Recordings of response to free-field stimuli at best frequency were made from single units in the central nucleus of the inferior colliculus of anesthetized cats. Stimulus position was varied in azimuth, and the responses of units were compared with variation in the intensity and arrival time of the sound at each ear, derived from cochlear microphonic (CM) recordings. CM recordings were made at each frequency and at every point in space for which single-unit data were collected. Interaural time difference (delay) increased monotonically, but not linearly, as the stimulus was moved away from the midline. However, a given delay did not represent a single azimuth across frequency. Low-frequency interaural intensity differences (IIDs) were monotonic across azimuth and peaked at, or near, the poles. Higher-frequency IIDs were nonmonotonic and peaked relatively close to the midline, decreasing toward the poles. Units that showed little variation in discharge across azimuth formed 28% of the sample and were classified as omnidirectional. For other units, the spike-count intensity function and the variation of the CM with azimuth were combined to form a derived monaural azimuth function. For 29% of those units showing azimuthal sensitivity, the derived monaural azimuth function matched the actual azimuth function. This suggested that these units received input from only one ear. The largest group of azimuthally sensitive units (47%) was formed from those units inferred to be IID sensitive. At higher frequencies these units displayed a peaked azimuth function paralleling the nonmonotonic relation of IID to azimuth. The proportion of inferred IID-sensitive units was close to that found in dichotic studies.


2002 ◽  
Vol 87 (2) ◽  
pp. 976-994 ◽  
Author(s):  
R. Y. Litovsky ◽  
B. Delgutte

The precedence effect (PE) is an auditory phenomenon involved in suppressing the perception of echoes in reverberant environments, and is thought to facilitate accurate localization of sound sources. We investigated physiological correlates of the PE in the inferior colliculus (IC) of anesthetized cats, with a focus on directional mechanisms for this phenomenon. We used a virtual space (VS) technique, where two clicks (a “lead” and a “lag”) separated by a brief time delay were each filtered through head-related transfer functions (HRTFs). For nearly all neurons, the response to the lag was suppressed for short delays and recovered at long delays. In general, both the time course and the directional patterns of suppression resembled those reported in free-field studies in many respects, suggesting that our VS simulation contained the essential cues for studying PE phenomena. The relationship between the directionality of the response to the lead and that of its suppressive effect on the lag varied a great deal among IC neurons. For a majority of units, both excitation produced by the lead and suppression of the lag response were highly directional, and the two were similar to one another. For these neurons, the long-lasting inhibitory inputs thought to be responsible for suppression seem to have similar spatial tuning as the inputs that determine the excitatory response to the lead. Further, the behavior of these neurons is consistent with psychophysical observations that the PE is strongest when the lead and the lag originate from neighboring spatial locations. For other neurons, either there was no obvious relationship between the directionality of the excitatory lead response and the directionality of suppression, or the suppression was highly directional whereas the excitation was not, or vice versa. For these neurons, the excitation and the suppression produced by the lead seem to depend on different mechanisms. Manipulation of the directional cues (such as interaural time and level differences) contained in the lead revealed further dissociations between excitation and suppression. Specifically, for about one-third of the neurons, suppression depended on different directional cues than did the response to the lead, even though the directionality of suppression was similar to that of the lead response when all cues were present. This finding suggests that the inhibitory inputs causing suppression may originate in part from subcollicular auditory nuclei processing different directional cues than the inputs that determine the excitatory response to the lead. Neurons showing such dissociations may play an important role in the PE when the lead and the lag originate from very different directions.


Sign in / Sign up

Export Citation Format

Share Document