Silicon, excited bound states of very shallow centers and deep transition metal defects

Author(s):  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Yanzhao Liu ◽  
Huichao Wang ◽  
Haipeng Zhu ◽  
Yanan Li ◽  
Jun Ge ◽  
...  

AbstractLog-periodic quantum oscillations discovered in transition-metal pentatelluride give a clear demonstration of discrete scale invariance (DSI) in solid-state materials. The peculiar phenomenon is convincingly interpreted as the presence of two-body quasi-bound states in a Coulomb potential. However, the modifications of the Coulomb interactions in many-body systems having a Dirac-like spectrum are not fully understood. Here, we report the observation of tunable log-periodic oscillations and DSI in ZrTe5 and HfTe5 flakes. By reducing the flakes thickness, the characteristic scale factor is tuned to a much smaller value due to the reduction of the vacuum polarization effect. The decreasing of the scale factor demonstrates the many-body effect on the DSI, which has rarely been discussed hitherto. Furthermore, the cut-offs of oscillations are quantitatively explained by considering the Thomas-Fermi screening effect. Our work clarifies the many-body effect on DSI and paves a way to tune the DSI in quantum materials.


1980 ◽  
Vol 15-18 ◽  
pp. 937-938 ◽  
Author(s):  
F.F. Bekker ◽  
J. Julianus ◽  
H. Van Nassou ◽  
R. Seewald ◽  
A. Myers ◽  
...  

Author(s):  
Karen A. Yates ◽  
Lesley F. Cohen

Here we review the literature concerning measurement of the Andreev reflection between a superconductor (S) and ferromagnet (F), with particular attention to the case where the ferromagnet is a transition metal oxide. We discuss the practicality of utilization of the current models for determination of the transport current spin polarization and examine the evidence for Andreev bound states. This article is part of the theme issue ‘Andreev bound states’.


Sign in / Sign up

Export Citation Format

Share Document