scale invariance
Recently Published Documents


TOTAL DOCUMENTS

1114
(FIVE YEARS 151)

H-INDEX

72
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Adrian F. Tuck

A method of calculating the Gibbs Free Energy (Exergy) for the Earth’s atmosphere using statistical multifractality — scale invariance - is described, and examples given of its application to the stratosphere, including a methodology for extension to aerosol particles. The role of organic molecules in determining the radiative transfer characteristics of aerosols is pointed out. These methods are discussed in the context of the atmosphere as an open system far from chemical and physical equilibrium, and used to urge caution in deploying “solar radiation management”.


2022 ◽  
Vol 2022 (01) ◽  
pp. 012
Author(s):  
Ki-Young Choi ◽  
Jinn-Ouk Gong ◽  
Su-beom Kang ◽  
Rathul Nath Raveendran

Abstract We suggest a new method to reconstruct, within canonical single-field inflation, the inflaton potential directly from the primordial power spectrum which may deviate significantly from near scale-invariance. Our approach relies on a more generalized slow-roll approximation than the standard one, and can probe the properties of the inflaton potential reliably. We give a few examples for reconstructing potential and discuss the validity of our method.


Soft Matter ◽  
2022 ◽  
Author(s):  
Paul Appshaw ◽  
Annela M. Seddon ◽  
Simon Hanna

The scale-invariance of a coarse-grained molecular dynamics model of a red blood cell is investigated through fluctuation analysis, justifying the use of “miniature cells” in silico.


2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Paolo Recchia ◽  
Alejandro Kievsky ◽  
Luca Girlanda ◽  
Mario Gattobigio

2021 ◽  
Vol 25 (12) ◽  
pp. 6133-6149
Author(s):  
Jana Ulrich ◽  
Felix S. Fauer ◽  
Henning W. Rust

Abstract. We model monthly precipitation maxima at 132 stations in Germany for a wide range of durations from 1 min to about 6 d using a duration-dependent generalized extreme value (d-GEV) distribution with monthly varying parameters. This allows for the estimation of both monthly and annual intensity–duration–frequency (IDF) curves: (1) the monthly IDF curves of the summer months exhibit a more rapid decrease of intensity with duration, as well as higher intensities for short durations than the IDF curves for the remaining months of the year. Thus, when short convective extreme events occur, they are very likely to occur in summer everywhere in Germany. In contrast, extreme events with a duration of several hours up to about 1 d are conditionally more likely to occur within a longer period or even spread throughout the whole year, depending on the station. There are major differences within Germany with respect to the months in which long-lasting stratiform extreme events are more likely to occur. At some stations the IDF curves (for a given quantile) for different months intersect. The meteorological interpretation of this intersection is that the season in which a certain extreme event is most likely to occur shifts from summer towards autumn or winter for longer durations. (2) We compare the annual IDF curves resulting from the monthly model with those estimated conventionally, that is, based on modeling annual maxima. We find that adding information in the form of smooth variations during the year leads to a considerable reduction of uncertainties. We additionally observe that at some stations, the annual IDF curves obtained by modeling monthly maxima deviate from the assumption of scale invariance, resulting in a flattening in the slope of the IDF curves for long durations.


2021 ◽  
Vol 2021 (12) ◽  
pp. 029
Author(s):  
J.R. Espinosa ◽  
J. Huertas

Abstract Some false vacua do not decay via bounces. This usually happens when a flat direction of the tunneling action due to scale invariance is lifted to a sloping valley by a scale breaking perturbation, pushing the bounce off to infinity. We compare two types of alternative decay configurations that have been proposed recently to describe decay in such cases: pseudo-bounces and new instantons. Although both field configurations are quite similar, we find that the pseudo-bounce action is lower than the new instanton one and describes more faithfully the bottom of the action valley. In addition, pseudo-bounces cover a range of field space wider than new instantons and, as a result, lead to a decay rate that can be lower than the one via new instantons by orders of magnitude.


2021 ◽  
Author(s):  
Guillermo B. Morales ◽  
Serena Di Santo ◽  
Miguel A Muñoz

The brain is in a state of perpetual reverberant neural activity, even in the absence of specific tasks or stimuli. Shedding light on the origin and functional significance of such activity is essential to understanding how the brain transmits, processes, and stores information. An inspiring, albeit controversial, conjecture proposes that some statistical characteristics of empirically observed neuronal activity can be understood by assuming that brain networks operate in a dynamical regime near the edge of a phase transition. Moreover, the resulting critical behavior, with its concomitant scale invariance, is assumed to carry crucial functional advantages. Here, we present a data-driven analysis based on simultaneous high-throughput recordings of the activity of thousands of individual neurons in various regions of the mouse brain. To analyze these data, we construct a unified theoretical framework that synergistically combines cutting-edge methods for the study of brain activity (such as a phenomenological renormalization group approach and techniques that infer the general dynamical state of a neural population), while designing complementary tools. This unified approach allows us to uncover strong signatures of scale invariance that is "quasi-universal" across brain regions and reveal that these areas operate, to a greater or lesser extent, at the edge of instability. Furthermore, this framework allows us to distinguish between quasi-universal background activity and non-universal input-related activity. Taken together, the following study provides strong evidence that brain networks actually operate in a critical regime which, among other functional advantages, provides them with a scale-invariant substrate of activity in which optimal input representations can be sustained.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Solvej Knudsen ◽  
B. D. Todd ◽  
Jeppe C. Dyre ◽  
J. S. Hansen

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Takuro Shimaya ◽  
Reiko Okura ◽  
Yuichi Wakamoto ◽  
Kazumasa A. Takeuchi

AbstractIn stable environments, cell size fluctuations are thought to be governed by simple physical principles, as suggested by recent findings of scaling properties. Here, by developing a microfluidic device and using E. coli, we investigate the response of cell size fluctuations against starvation. By abruptly switching to non-nutritious medium, we find that the cell size distribution changes but satisfies scale invariance: the rescaled distribution is kept unchanged and determined by the growth condition before starvation. These findings are underpinned by a model based on cell growth and cell cycle. Further, we numerically determine the range of validity of the scale invariance over various characteristic times of the starvation process, and find the violation of the scale invariance for slow starvation. Our results, combined with theoretical arguments, suggest the relevance of the multifork replication, which helps retaining information of cell cycle states and may thus result in the scale invariance.


Sign in / Sign up

Export Citation Format

Share Document