scholarly journals Use of a Least Squares Finite Element Lattice Boltzmann Method to Study Fluid Flow and Mass Transfer Processes

Author(s):  
Yusong Li ◽  
Eugene J. LeBoeuf ◽  
P. K. Basu
2015 ◽  
Vol 51 (10) ◽  
pp. 1493-1504 ◽  
Author(s):  
Md. Shakhawath Hossain ◽  
X. B. Chen ◽  
D. J. Bergstrom

2021 ◽  
Vol 2097 (1) ◽  
pp. 012024
Author(s):  
Jianhu Wang ◽  
Zhongdi Duan ◽  
Cheng Cheng ◽  
Wenyong Tang

Abstract An adsorption model for fluid flow, heat, and mass transfer of the adsorbent bed was established. Based on the single relaxation time lattice Boltzmann method, a dual-distributed lattice Boltzmann model of density and concentration was established to solve the fluid flow and mass transfer process in the surface area of the adsorbent bed. The adsorption and heat transfer process on the surface of the adsorbent bed was incorporated into the dual-distributed lattice Boltzmann model by the fourth-order Runge-Kutta finite difference method. The multiphysics fields under Poiseuille flow were simulated by the presented model, and the adsorption capacity and temperature distribution during the adsorption process were investigated.


Author(s):  
Salah Hosseini ◽  
Vahid Abdollahi ◽  
Amir Nejat

Conjugate convective-conductive heat transfer in an enclosure is simulated. Internal heat and contaminant sources are included in the fluid flow domain, causing mass transfer within the cavity. The two-dimensional governing equations for natural heat and mass convection in the fluid phase and heat conduction in the solid phase are solved employing lattice Boltzmann method. The effects of Rayleigh number and buoyancy ratio variations on the fluid flow, heat and mass transfer characteristics are studied.


2004 ◽  
Vol 69 (6) ◽  
Author(s):  
Yusong Li ◽  
Eugene J. LeBoeuf ◽  
P. K. Basu

Author(s):  
Y. W. Kwon ◽  
J. C. Jo

A computational technique was developed for analysis of fluid-structure interaction. The fluid flow was solved using the lattice Boltzmann method which found to be computationally simple and efficient. In order to apply the lattice Boltzmann method to irregular shapes of fluid domains, the finite element based lattice Boltzmann method was developed. In addition, the turbulent model was also implemented into the lattice Boltzmann formulation. Structures were analyzed using either beam or shell elements depending of the nature of the structures. Then, coupled transient fluid flow and structural dynamics were solved one after another for each time step. Numerical examples for both 2-D and 3-D fluid-structure interaction problems were presented to demonstrate the developed techniques.


Sign in / Sign up

Export Citation Format

Share Document