nonuniform grids
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1320
Author(s):  
Pedro Ortiz ◽  
Juan Carlos Trillo

In this paper, we introduce and analyze the behavior of a nonlinear subdivision operator called PPH, which comes from its associated PPH nonlinear reconstruction operator on nonuniform grids. The acronym PPH stands for Piecewise Polynomial Harmonic, since the reconstruction is built by using piecewise polynomials defined by means of an adaption based on the use of the weighted Harmonic mean. The novelty of this work lies in the generalization of the already existing PPH subdivision scheme to the nonuniform case. We define the corresponding subdivision scheme and study some important issues related to subdivision schemes such as convergence, smoothness of the limit function, and preservation of convexity. In order to obtain general results, we consider σ quasi-uniform grids. We also perform some numerical experiments to reinforce the theoretical results.


Author(s):  
Mehakpreet Singh ◽  
Gavin Walker

AbstractThis work is focused on developing a finite volume scheme for approximating a fragmentation equation. The mathematical analysis is discussed in detail by examining thoroughly the consistency and convergence of the numerical scheme. The idea of the proposed scheme is based on conserving the total mass and preserving the total number of particles in the system. The proposed scheme is free from the trait that the particles are concentrated at the representative of the cells. The verification of the scheme is done against the analytical solutions for several combinations of standard fragmentation kernel and selection functions. The numerical testing shows that the proposed scheme is highly accurate in predicting the number distribution function and various moments. The scheme has the tendency to capture the higher order moments even though no measure has been taken for their accuracy. It is also shown that the scheme is second-order convergent on both uniform and nonuniform grids. Experimental order of convergence is used to validate the theoretical observations of convergence.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 335
Author(s):  
Pedro Ortiz ◽  
Juan Carlos Trillo

In this paper, we analyze the behavior of a nonlinear reconstruction operator called PPH around discontinuities. The acronym PPH stands for Piecewise Polynomial Harmonic, since it uses piecewise polynomials defined by means of an adaption based on the use of the weighted Harmonic mean. This study is carried out in the general case of nonuniform grids, although for some results we restrict to σ quasi-uniform grids. In particular we analyze the numerical order of approximation close to jump discontinuities and the elimination of the Gibbs effects. We show, both theoretically and with numerical examples, that the numerical order is reduced but not completely lost as it is the case in their linear counterparts. Moreover we observe that the reconstruction is free of any Gibbs effects for sufficiently small grid sizes.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 310 ◽  
Author(s):  
Pedro Ortiz ◽  
Juan Carlos Trillo

This paper is devoted to introducing a nonlinear reconstruction operator, the piecewise polynomial harmonic (PPH), on nonuniform grids. We define this operator and we study its main properties, such as its reproduction of second-degree polynomials, approximation order, and conditions for convexity preservation. In particular, for σ quasi-uniform grids with σ≤4, we get a quasi C3 reconstruction that maintains the convexity properties of the initial data. We give some numerical experiments regarding the approximation order and the convexity preservation.


2021 ◽  
Vol 70 ◽  
pp. 107-123
Author(s):  
Daniele Del Sarto ◽  
Erwan Deriaz ◽  
Xavier Lhebrard ◽  
Mathieu Rigal

We consider a procedure for combining high order finite volumes and tree-based nonuniform grids. Especially, we focus on efficient algorithms for third order multidimensional volume interpolation and communication between levels of refinement. In the end, numerical results are reviewed to validate our approach.


Author(s):  
P. Mushahary ◽  
S. R. Sahu ◽  
J. Mohapatra

In this paper, a second-order singularly perturbed differential-difference equation involving mixed shifts is considered. At first, through Taylor series approximation, the original model is reduced to an equivalent singularly perturbed differential equation. Then, the model is treated by using the hybrid finite difference scheme on different types of layer adapted meshes like Shishkin mesh, Bakhvalov–Shishkin mesh and Vulanović mesh. Here, the hybrid scheme consists of a cubic spline approximation in the fine mesh region and a midpoint upwind scheme in the coarse mesh region. The error analysis is carried out and it is shown that the proposed scheme is of second-order convergence irrespective of the perturbation parameter. To display the efficacy and accuracy of the proposed scheme, some numerical experiments are presented which support the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document