A Novel Fisher Criterion Based S t -Subspace Linear Discriminant Method for Face Recognition

Author(s):  
Wensheng Chen ◽  
Pong C. Yuen ◽  
Jian Huang ◽  
Jianhuang Lai
2020 ◽  
pp. 1-11
Author(s):  
Mayamin Hamid Raha ◽  
Tonmoay Deb ◽  
Mahieyin Rahmun ◽  
Tim Chen

Face recognition is the most efficient image analysis application, and the reduction of dimensionality is an essential requirement. The curse of dimensionality occurs with the increase in dimensionality, the sample density decreases exponentially. Dimensionality Reduction is the process of taking into account the dimensionality of the feature space by obtaining a set of principal features. The purpose of this manuscript is to demonstrate a comparative study of Principal Component Analysis and Linear Discriminant Analysis methods which are two of the highly popular appearance-based face recognition projection methods. PCA creates a flat dimensional data representation that describes as much data variance as possible, while LDA finds the vectors that best discriminate between classes in the underlying space. The main idea of PCA is to transform high dimensional input space into the function space that displays the maximum variance. Traditional LDA feature selection is obtained by maximizing class differences and minimizing class distance.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Wen-Sheng Chen ◽  
Chu Zhang ◽  
Shengyong Chen

Fisher linear discriminant analysis (FLDA) is a classic linear feature extraction and dimensionality reduction approach for face recognition. It is known that geometric distribution weight information of image data plays an important role in machine learning approaches. However, FLDA does not employ the geometric distribution weight information of facial images in the training stage. Hence, its recognition accuracy will be affected. In order to enhance the classification power of FLDA method, this paper utilizes radial basis function (RBF) with fractional order to model the geometric distribution weight information of the training samples and proposes a novel geometric distribution weight information based Fisher discriminant criterion. Subsequently, a geometric distribution weight information based LDA (GLDA) algorithm is developed and successfully applied to face recognition. Two publicly available face databases, namely, ORL and FERET databases, are selected for evaluation. Compared with some LDA-based algorithms, experimental results exhibit that our GLDA approach gives superior performance.


2017 ◽  
Vol 9 (1) ◽  
pp. 1-9
Author(s):  
Fandiansyah Fandiansyah ◽  
Jayanti Yusmah Sari ◽  
Ika Putri Ningrum

Face recognition is one of the biometric system that mostly used for individual recognition in the absent machine or access control. This is because the face is the most visible part of human anatomy and serves as the first distinguishing factor of a human being. Feature extraction and classification are the key to face recognition, as they are to any pattern classification task. In this paper, we describe a face recognition method based on Linear Discriminant Analysis (LDA) and k-Nearest Neighbor classifier. LDA used for feature extraction, which directly extracts the proper features from image matrices with the objective of maximizing between-class variations and minimizing within-class variations. The features of a testing image will be compared to the features of database image using K-Nearest Neighbor classifier. The experiments in this paper are performed by using using 66 face images of 22 different people. The experimental result shows that the recognition accuracy is up to 98.33%. Index Terms—face recognition, k nearest neighbor, linear discriminant analysis.


Sign in / Sign up

Export Citation Format

Share Document