Riemann-Solver Free Schemes

Author(s):  
Tim Kröger ◽  
Sebastian Noelle
Keyword(s):  
1994 ◽  
Vol 98 (979) ◽  
pp. 325-339 ◽  
Author(s):  
E. F. Toro ◽  
A. Chakraborty

Abstract An improved version (HLLC) of the Harten, Lax, van Leer Riemann solver (HLL) for the steady supersonic Euler equations is presented. Unlike the HLL, the HLLC version admits the presence of the slip line in the structure of the solution. This leads to enhanced resolution of computed slip lines by Godunov type methods. We assess the HLLC solver in the context of the first order Godunov method and the second order weighted average flux method (WAF). It is shown that the improvement embodied in the HLLC solver over the HLL solver is virtually equivalent to incorporating the exact Riemann solver.


2001 ◽  
Vol 17 (1) ◽  
pp. 39-47
Author(s):  
San-Yin Lin ◽  
Sheng-Chang Shih ◽  
Jen-Jiun Hu

ABSTRACTAn upwind finite-volume scheme is studied for solving the solutions of two dimensional Euler equations. It based on the MUSCL (Monotone Upstream Scheme for Conservation Laws) approach with the Roe approximate Riemann solver for the numerical flux evaluation. First, dissipation and dispersion relation, and group velocity of the scheme are derived to analyze the capability of the proposed scheme for capturing physical waves, such as acoustic, entropy, and vorticity waves. Then the scheme is greatly enhanced through a strategy on the numerical dissipation to effectively handle aeroacoustic computations. The numerical results indicate that the numerical dissipation strategy allows that the scheme simulates the continuous waves, such as sound and sine waves, at fourth-order accuracy and captures the discontinuous waves, such a shock wave, sharply as well as most of upwind schemes do. The tested problems include linear wave convection, propagation of a sine-wave packet, propagation of discontinuous and sine waves, shock and sine wave interaction, propagation of acoustic, vorticity, and density pulses in an uniform freestream, and two-dimensional traveling vortex in a low-speed freestream.


AIAA Journal ◽  
1992 ◽  
Vol 30 (10) ◽  
pp. 2558-2561 ◽  
Author(s):  
P. A. Jacobs

Sign in / Sign up

Export Citation Format

Share Document